当前位置:首页 » 玩dota » dota遥感图像像素为多少

dota遥感图像像素为多少

发布时间: 2022-09-13 01:37:40

㈠ 什么是遥感影像的分辨率说出分辨率大小和影像显示地表信息能力之间的关系

遥感影像的分辨率指图像上能够详细区分的最小单元的尺寸或大小,或指遥感器区分两个目标的最小角度或线性距离的度量。分辨率越大,影像显示地表信息的能力越强。

分辨率决定了位图图像细节的精细程度。通常情况下,图像的分辨率越高,所包含的像素就越多,图像就越清晰,印刷的质量也就越好。同时,它也会增加文件占用的存储空间。

遥感影像(简称:RS,英文:Remote Sensing Image)是指记录各种地物电磁波大小的胶片或照片,主要分为航空像片和卫星相片。

遥感影像的分辨率还包括光谱分辨率(Spectral Resolution)、辐射分辨率(Radiant Resolution)、时间分辨率(Temporal Resolution)、空间分辨率(Spatial Resolution)。

(1)dota遥感图像像素为多少扩展阅读:

遥感影像的应用:

1、土地覆盖监测:土地覆盖是人地相互作用过程的最终体现,也是地球表层系统最明显的景观标志,土地覆盖变化又会引发一系列环境的改变。遥感技术因其能提供动态、丰富和廉价的数据源已成为获取土地覆盖信息最为行之有效的手段。

2、森林覆盖监测:森林是陆地生态系统的主体,是人类赖以生存的基础资源。传统五年一次的一类调查和十年一次的二类调查存在更新周期长、历经时间长、样地易被特殊对待、数据可比性差等缺陷,难以科学、准确评估森林资源和生态状况变化。

3、遥感具有宏观性、客观性、周期性、便捷性等特点,已经在森林资源清查(一类调查)和规划设计调查(二类调查)中大显身手。

4、草地覆盖监测:草地是仅次于森林资源的陆地植物资源。遥感技术在草地资源调查、分类和制图中得到应用,大大地提高了草地资源调查与制图的精度,促使草地分类由定性逐渐走向定量化,可以完成草地退化监测与评估,节省了人力、物力和财力。

5、湿地资源监测:湿地是地球上水陆相互作用形成的独特的生态系统,是自然界最富生态多样性的景观和人类最重要的生存环境之一。

㈡ 遥感数据及其处理

一、遥感数据及其特征

滇东北地区铅锌矿遥感地质调查工作共分为三个层次,其中1∶5万层次及1∶2.5万层次使用美国陆地卫星(Landsat-7)ETM+数据作为基础数据,1∶1万层次使用美国快鸟(QuickBird)卫星数据作为基础数据。

(一)ETM+数据

ETM+数据是美国1999年4月所发射的陆地7号卫星携带的增强型主题成像仪(ETM+)对地球表面所采集的数据,其基本参数、设计波段的特征及设计用途见表3-1。

表3-1Landsat-7卫星参数及数据特征

长期对Landsat系列卫星数据在地质方面的应用研究表明,Landsat卫星数据各个波段都能提供地质构造、地形地貌信息。其中,5、6、7波段信息量更为丰富,1、2、3、4波段能够区分岩石中的铁、锰矿物和含铁、锰矿物的相对含量,尤其是4波段对于三价铁的矿物比较敏感,可以借此区分岩性,5波段对绿帘石族特征谱带敏感,7波段识别碳酸盐岩、绿片岩、绢云片岩和粘土岩及粘土矿物聚集带的效果较好,6波段对于识别地热异常、岩石和构造的含水性及鉴别地质构造有一定的用途。另外,Landsat-7还增加了一个15m分辨率的全色波段,从视觉效果上直接提高了对地物的识别,见表3-2。

表3-2 Landsat-7ETM+数据特征及在地质上的用途简表

图3-1 滇东北地区ETM数据分布示意图

本次工作范围占有ETM数据129-041及129-042两景,时相均为2001年12月23日。工作范围在两景数据中的位置如图3-1。数据元数据情况见表3-3。

表3-3 129-041,129-042卫星数据元数据特征

续表

(二)快鸟(Quick Bird)卫星数据

快鸟(Quick Bird)是美国Digital Globel(Earth Watch)公司2001年10月发射的高分辨率卫星,其空间最高分辨率为61cm,可制作比例尺在1∶1万左右的影像。卫星参数及数据特征见表3-4。

表3-4 Quick Bird卫星参数及数据特征

快鸟卫星数据的波段设置,与ETM数据具有一定的对应性,1、2、3、4波段波长范围完全一致,只是在全色波段快鸟数据比ETM数据的波长范围略窄一些。

大比例尺遥感地质调查工作主要布设于彝良毛坪地区,购置快鸟数据80km2,范围为X:3038000—3046000,Y:35392000—35402000。属于现拍数据,数据采集时间为2004年5月8日,其元数据特征见表3-5。

表3-5 毛坪地区快鸟卫星数据元数据特征

二、遥感数据处理

(一)数据处理软件

遥感图像处理主要使用加拿大专业遥感图像处理软件PCIGeomatica8.0及美国着名专业遥感图像处理软件ENVI3.5。

(二)数据处理流程

遥感数据处理的主要流程包括数据组织(即数据种类选择、范围确认、时相选择、订购等)、数据镶嵌(单景数据不存在此过程)、几何校正、图像生成、图像增强、图像整饰等过程,见图3-2。

图3-2 数据处理流程图

(三)数据处理

1.数据镶嵌

所谓镶嵌,就是将相邻两景图像拼接、形成大图像的过程。在图像镶嵌过程中如果使用不同时相的数据,由于数据成像的季节、太阳高度角不同,导致同名像元点在不同的数据上可能表现为不同的灰阶;当使用相同时相数据时,由于地面站后期人为分景、单独处理,也会导致同名像元点在不同的数据上有可能表现为不同的灰阶,同一地物在不同数据上表现出不同特征。因此说,图像的镶嵌过程是一个数据重叠范围内的配准过程。

滇东北地区1∶5万工作区涉及129-041及129-042两景数据,数据镶嵌是在PCIGeomatica遥感图像处理平台的GCPworks模块中完成的。镶嵌过程中侧重于重叠数据范围内同名点的选择及镶嵌线的选择。一般每两景图像上下镶嵌选择10~15个GCP。在镶嵌线的选择上,避免一条直线,根据镶嵌区的地貌特征尽量使镶嵌线通过色差较大的地方,避免人为造成线性体。然后利用PCI提供的ColourMatching功能对镶嵌区内的图像色彩进行匹配,使镶嵌后图像的色彩在镶嵌线两侧柔和过渡,达到无缝的效果。

2.几何校正

(1)几何校正方法

由于卫星姿态与轨道、地球运动和形状、遥感器本身的性能和扫描镜的不规则、探测器的配置、检测器采样延迟、数模转换的误差等等原因,均会导致原始遥感图像的严重几何变形,不能直接使用。一般而言,卫星地面站会根据卫星轨道的各种参数将图像进行粗略的校正,但往往由于遥感器的位置及姿态的测量值不高,其粗校正后的图像仍存在不小的几何变形。用户需要利用地面控制点和多项式纠正模型做进一步的几何纠正。只有按照一定的投影模式对原始图像进行几何精校正后的图像,才能使图像上每个像元具有相应的准确的地理坐标,只有进行几何精校正后的图像才能制作成能与其他图件配合使用的“地图(map)”。几何纠正的步骤有以下3步:

1)地面控制点(GCP)的选择。地面控制点的选择一般有两种方法,实地测量和在相同比例尺或更大比例尺地形图上采点。地面控制点选择的原则是,选择在图像上显示清晰、实地不(或很少)随时间变化的定位识别标志,如道路交叉点、河流交汇处等。另外,控制点要在校正范围内均匀分布,并保证一定的数量。

2)多项式模型纠正。多项式模型纠正就是在图像像元坐标(x,y)与地形图上相应点的地理坐标(X,Y)之间通过适当的坐标多项式模型(坐标变换函数)建立一种关系,从而通过像元的重新定位把图像拟合到地形图上。多项式校正模型的数学表达式为:

滇东北铅锌银矿床遥感地质与成矿预测

式中:aij,bij为多项式系数;N为多项式次数,取决于图像的变形程度、控制点的数量和地形位移的大小。

3)重采样。由于经过了多项式校正,重新定位后的像元在原图像中分布是不均匀的,因此需要对原图像按一定的规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的重采样方法有最临近法、双线性内插法、三次卷积内插法。3种方法在地物边缘增强、地物连贯性、计算速度等方面各有利弊。其中三次卷积内插法对边缘有所增强,并具有均衡化和清晰化的效果,但计算量大。

(2)1∶5万工作范围图像几何校正

1∶5万工作范围图像校正使用相应范围的1∶5万地形图60幅。校正点的选择是在60幅地形图上均匀选择GCP203点,校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、6°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体,与地形图保持一致。

(3)1∶1万工作范围图像几何校正

由于缺少相同比例尺地形图,收集到的地形资料只有区内1∶5万地形图和极少部分1∶2000地形图,因此校正点的采集采用地形图采点与野外实地测点相结合的方法完成。共采集GCP33个。校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、3°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体。

3.彩色合成

彩色合成的目的是将单色波段每像元的28(即256)色空间扩展到224(即16777216)色空间,增强目标地物的可视性,提高目视解译效果。通过色彩丰富、信息携带量大的基础彩色图像,解译人员才能充分识别图像的信息,进行地质解译。

为达到最佳的彩色合成效果,参加合成的波段选择常遵循以下原则:

1)参加合成的单波段有较大的方差,即波段本身具有较大的信息量。

2)参加合成的各波段间相关系数较小,避免信息的重复和冗余。

3)参加合成的三波段图像的均值要相近,避免合成图像产生严重偏色。

4)为突出目标地物,要选择目标物体显示较为突出的波段。

彩色合成图像为3个波段,赋予红、绿、蓝三原色的合成图像。

1∶5万工作范围基础图像制作选择了波段7、4、2合成方案,1∶2.5万工作范围基础图像选择了波段4、5、3合成方案,1∶1万工作区基础图像选择了波段3、2、1合成方案。选择依据将在“数据特征”一节中进行分析。

4.图像增强

图像增强的目的是为了突出相关的主题信息,提高图像的视觉效果,使解译分析者能更容易地识别图像内容,从而从图像中提取更有用的信息。图像增强的方法很多,从其作用的空间来看可以分为光谱增强和空间增强。这两种增强类型在整个图像处理和信息提取过程中都很常用。对于基础图像的增强一般采用光谱增强,从像元的对比度及波段间的亮度等方面改善图像的视觉效果,基本不改变目标地物的形状、大小等特征。

项目工作中的3种基础图像在生成后均采用光谱增强。根据图像各波段的直方图分布,分析整幅图像中像元间对比度的差异大小,确定光谱增强的具体手段。其中1∶5万范围的波段7、4、2合成图像面积大,地物种类多,信息丰富,增强过程中要求各种信息的充分显示,因此使用直方图均衡化的方法,理论上使图像中的各种亮度值均衡分布。1∶2.5万范围的波段4、5、3合成图像,图像范围相对较小,又由于地形切割较深,造成图像上山体阴影所占面积较大,而西南角地区比较平坦,反射率较高,像元亮度大,因此选择线性拉伸的方法进行增强。1∶1万范围的快鸟卫星波段3、2、1数据合成影像中,红尖山—姜家湾—花苗寨一带植被覆盖较多,造成影像上大面积绿色,使用线性拉伸的方法可以保证原始图像的对比度不再有大改变。

图3-3 毛坪地区图像不同拉伸方法效果对比图

拉伸方法应用效果以毛坪地区1∶1万影像为例,见图3-3。由图中可以看出,不拉伸的图像显然色彩层次太少,使用均方根拉伸的图像总体上提高了图形的亮度,压抑了像元间对比度的扩展,同时亮度高的地区彩色层次减少;直方图均衡化的图像提高了像元间的对比度,在原图像的暗色地区使色彩层次增加,但高亮色地区由于像元频率的增高而使色彩层次减少;线性拉伸不同程度地克服了以上几种拉伸的弊端,使图像色彩趋于丰富,层次趋于明显,便于解译者的解译。

在解译过程中为突出某种特征地物也可采用其他的增强手段,这里不再赘述。

5.图像融合

为了提高图像清晰度,同时充分发挥多波段数据的特点,需要将高分辨率的全色波段与参加彩色合成的多光谱波段进行融合处理。融合后的图像可以发挥多光谱图像与高分辨率图像各自的优势,弥补不足,改善遥感图像目标识别的准确率,提高遥感图像的综合分析精度。

融合方法大致可以分为彩色相关技术和数学方法两大类。彩色相关技术包括彩色合成、彩色空间变换等,有利于保持分辨率和色彩特征,如IHS变换法。常用的融合方法有IHS变换法、PCA变换法、HPF变换法与小波变换法等。

鉴于工作目的,为了提高地面分辨率和保持低分辨率图像的光谱信息,工作中选择了IHS变换方法,即将标准的RGB图像分离为空间信息的明度、波谱信息的色别及饱和度,而后用高分辨率图像代替明度再进行反变换的融合方法。融合后的图像既具有较高的分辨率,又具有与原图像相同的色度与饱和度。其具体过程如图3-4。

项目工作中所采用的ETM数据7个30m多光谱波段与15mPAN波段源于同一传感器,快鸟数据的4个2.4m多光谱波段与其0.6mPAN波段也源于同一传感器,因此数据融合过程中不存在数据配准问题,只对低分辨率波段进行重采样,并对参加融合的各波段进行直方图匹配,再进行IHS变换和RGB变换。其中低分辨率波段的重采样使用的方法为三次卷积内插法。融合前后图像特征如图3-5所示。

图3-4 IHS变换融合流程图

图3-5 融合前、后图像特征对比示意图

(四)图像处理精度评价

镶嵌校正过程中的精度评价常常使用RMS误差(均方根)来衡量,RMS是GCP的输入位置和逆转换之间的距离;它是在用转换矩阵对一个GCP做转换时所期望输出的坐标与实际输出的坐标之间的偏差。

滇东北铅锌银矿床遥感地质与成矿预测

式中:Ri为GCPi的RMS误差,XRi为GCPi的X残差,YRi为GCPi的Y残差。

整幅图像的总RMS误差:

滇东北铅锌银矿床遥感地质与成矿预测

式中:T为总RMS误差。

1.1∶5万镶嵌精度

数据镶嵌的误差大小对几何校正有很大影响,大的误差将人为增大图像的畸变。工作中1∶5万工作范围需要129-041与129-042两景数据上下镶嵌,按照《1/25万遥感地质调查技术规定》(DD2001—01)对镶嵌配准精度的规定同比计算,预设镶嵌误差T≤0.40。镶嵌过程中共采集镶嵌GCP13个,纠正模型1次,误差见表3-6。

表3-6 1∶5万图像镶嵌误差

由表3-6中可以看出,T=0.311,小于预设值0.40,能够满足无缝镶嵌的要求。

2.校正精度

(1)1∶5万图像校正精度

校正精度按照《1/25万遥感地质调查技术规定》(DD2001—01)对图像校正精度及校正点数目的同比计算,预设校正误差T≤0.80。校正过程中在60幅1∶5万地形图上基本均匀地选择203点,经误差调整选择有效校正GCP190个,校正多项式模型选择二次多项式,其误差见表3-7,由表中可以看出,T=0.794,小于预设值0.80,能够达到规范要求。

表3-7 1∶5万图像校正误差

(2)1∶1万图像校正精度

由于工作区只收集到1∶5万地形图和占很小部分的1∶2000地形地质图,且1∶5万地形图年代比较久远,因此在几何校正过程中误差较大。由于图像细节清晰,不影响使用与定位。

3.融合精度

低分辨率数据与高分辨率数据融合的目的是为了提高分辨率,为此,图像融合前后清晰程度的改变成为融合精度评价的主要指标。图像的清晰度是指地物的边界或影线两侧附近灰度有明显差异,即灰度变化率大小,它反映图像微小细节反差变化的速率,即图像多维方向上密度变化的速率,可用g来表示,一般来说融合前后g的变化越大则融合后图像的清晰度越高。

滇东北铅锌银矿床遥感地质与成矿预测

ETM30m多光谱波段与15m全色波段融合前后的值及快鸟数据2.4m多光谱数据与0.6m全色波段融合前后的g值对比见表3-8。由表中可以看出,融合后密度变化速率比原来提高几十到上百倍,表明图像融合后精度有很大提高。

表3-8 融合精度对照

三、工作区遥感数据

(一)1∶5万工作范围ETM数据特征

1∶5万工作范围图像行列数为9233(列)×12423(行)(插值为15m),总像元数为114701559点,由于左上角数据缺少使1140点为无效像素。

数据基本统计特征如表3-9至表3-11,各波段直方图见图3-6。

表3-9 1∶5万范围ETM数据基本统计特征

表3-10 1∶5万范围ETM数据波段间协方差矩阵

表3-11 1∶5万范围ETM数据波段间相关系数矩阵

从以上统计参数来看,8个波段的均值除60m分辨率的波段6和15m分辨率的PAN波段外,其他6个波段相差不大。8个波段的标准差从大到小排列为S5>S7>S4>S3>S6>S8>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R12、R23、R25、R35、R45、R57、R37、R27均比较大,数值在0.80以上,而R13、R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而确定的。

直方图是图像范围内每个亮度值(DN)的像元数量的统计分布,能够直观反映原始图像的质量信息,如亮度值分布范围、亮度值分布规律,也可直接大致判读出图像的中值等参数。从8个波段的直方图可以看出波段4、5、7的直方图呈双峰表现,主峰在50~60出现,而在10~15之间又出现一个表现很窄的次峰,这是由于图像上的阴影及水体的像元亮度值所产生的,由此大致可以计算出阴影及水体在图像中所占的面积,以波段5为例计算出所占比例为6%左右。其他各波段的直方图比较接近正态分布。

协方差矩阵反映各个波段各自亮度值取值的分散程度,同时又能反映不同波段间的相关密切程度,它是单波段图像统计表与相关系数矩阵的合成,同时又能反向分裂。

图3-6 1∶5万范围ETM各波段图像直方图

(二)1∶2.5万工作范围ETM数据特征

1∶2.5万工作范围行列数为3000(列)×1860(行),总像元数为5580000点,插值后分辨率为15m。数据基本统计特征如表3-12至表3-14,各波段直方图如图3-7。

表3-12 1∶2.5万范围ETM数据基本统计特征

表3-13 1∶2.5万范围ETM数据波段间协方差矩阵

表3-14 1∶2.5万范围ETM数据波段间相关系数矩阵

图3-7 1∶2.5万范围ETM各波段图像直方图

从以上统计参数来看,8个波段的均值除60m分辨率的波段6为110表现较大,15m分辨率的PAN波段为29表现较小外,其他1、4、5三个波段数值相差不多,在50左右,2、3、7三个波段也相差不大,在37左右。8个波段的标准差从大到小排列为S5>S4>S7>S3>S8>S6>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R57、R23、R73表现最大,数值在0.9以上,R12、R13、R25、R27、R35、R45次之,数值在0.8~0.9之间,而R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶2.5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而决定的。

8个波段的直方图形态大致与1∶5万范围一致,表现意义相同,不再赘述。

(三)1∶1万工作范围QB数据特征

1∶1万工作范围采用高分辨率的QB数据,其多光谱波段只有4个,分辨率为2.4m,工作范围图像行列数为4168(列)×3407(行),总像元数为14200376点。多光谱数据基本统计特征如表3-15、表3-16,各波段直方图如图3-8。

表3-15 1∶1万范围QB数据基本统计特征

表3-16 1∶1万范围QB数据波段间相关系数矩阵

从以上统计可以看出,QB数据4个波段中1、2、3波段的相关系数均较大(R12=R23=0.96,R13=0.89),只有近红外波段与其他波段的相关系数很小(R14=0.29,R24=0.37,R34=0.20),同时可以看出近红外波段的中值与标准差也与其他波段相差很大,这是由于工作区内大面积植被所引起的。众所周知,绿色植物的叶绿素对可见光红波段(0.6~0.7μm)有强吸收,而叶内组织对近红外波段(0.7~1.1μm)有高反射,因此大面积植被将会直接改变相关波段的像元亮度值的分布。在基础图像彩色合成波段选择中,依据各项原则结合统计参数,选择波段1、2、3参与合成,为使合成后图像接近真彩色,合成方案为3(R)+2(G)+1(B)。

图3-8 1∶1万范围QB各波段图像直方图

四、遥感信息增强与提取

为了突出地质目标,增强微弱岩石蚀变信息,在图像处理过程中的不同阶段使用了多种信息增强技术方法,主要有地表三维技术、比值运算、KL变换、空间滤波、彩色变换技术等(表3-17)。

表3-17 工作中采用的主要信息增强方法技术及用途

(一)地表三维技术

地表三维技术是利用DEM(数字高程模型)将地图上的二维平面空间按高程的差异制作成一种地形上连续起伏变化的曲面,从而更真实地反映地表地貌的自然景观,突出显示特殊岩性的特殊地貌特征。

毛坪地区地表三维影像的制作利用了1∶5万DEM与QB3、2、1彩色合成图像;1∶5万DEM来源于1∶5万地形图,通过等高线数字化—高程赋值—DEM生成等过程实现。地表三维影像的制作主要有DEM与影像的配准及配准后的DEM与影像的复合两个过程。

图3-9是毛坪地区地表三维景观局部,其中视点为(103°54བྷ″,27°27བ″),视向45°,视角60°,视域60°。

图3-9 毛坪地区快鸟遥感影像地表三维景观(局部)

从毛坪地区地表三维影像可以看出左侧发育柱状节理的玄武岩及右侧二叠系灰岩地貌景观。

(二)图像比值运算

比值运算是将两个波段中不同亮度的地物成辐射状投射到一个曲线上,从而可非线性地夸大不同地物间的反差,它能够压抑影像上由于地形坡度和方向而引起的辐射量变化,减小环境条件的影响,提供任何单波段都不具有的独特信息。其运算公式为:

滇东北铅锌银矿床遥感地质与成矿预测

式中:DNm(x,y),DNn(x,y)分别是像元(x,y)在m和n波段上的亮度值;Rmn(x,y)为输出的比值。工作中比值运算主要运用于以下两方面。

1.计算植被覆盖度

植被覆盖度(f)是指某一时间某一地区内植被冠层的垂直投影面积与区域总面积之比。遥感地质解译主要是利用地表物体的光谱反射特性的差异,提取与地质工作有关的信息,工作的特点主要针对地表岩石、构造等,当地表植被覆盖时,对这些信息的解译将造成阻碍。因此,了解工作区的植被覆盖度能客观评价该区遥感地质解译的可解译程度。

研究表明绿色植物在可见光红波段(0.6~0.7μm)有强的吸收(叶绿素引起),在近红外波段(0.7~1.1μm)有高的反射和透射(叶内组织引起)。因此,在这两个波段使用比值运算可以充分表达它们反射率之间的差异,制作植被为高亮显示的植被信息图,并直接在图像上以像元数目比值求解植被覆盖度。

2.提取矿化蚀变信息

ETM的不同波段在地质上有不同的应用,这主要取决于各种与矿有关的蚀变矿物在不同波段存在波谱特征上的差异。图3-26是典型蚀变矿物的反射波谱曲线,从图中可看出,通常所讲的泥化蚀变矿物(即含有OH-、CO2-3)在2.2μm附近有明显吸收带,并与TM7波长范围相吻合。而在波段5的波长范围(1.55~1.75μm)内少有矿物的吸收谱带,多数都表现出高反射的特点,未蚀变矿物在波段5范围均没有明显的波谱特征,表现在TM5与TM7两个波段的相对亮度值的相对差异。因此,常常可使用波段5/7比值来突出含羟基和CO2-3类的蚀变矿物特征。另外,由图中可以看出三价铁矿物在波段1具有强的吸收,而在波段3具有相对强的反射;二价铁矿物在波段4具有强的吸收,而在波段5相对具有反射特征,因此也常用波段5/4、3/1比值来突出铁类矿物蚀变特征。比值后的图像上欲突出的蚀变特征常以高亮值显示而被提取出来。

(三)KL变换

KL变换又称为主成分分析,是在统计特征基础上的多维(如多波段)正交线性变换。多波段图像通过这种变换后产生一组新的组分图像,把原来多个波段中的信息进行集中和重组,并使新组分图像之间互不相关。其运算公式为:

滇东北铅锌银矿床遥感地质与成矿预测

其中,X为原图像p个波段的像元值向量,Y为变换后的q个组分的像元值向量,q≤

,T为变换矩阵。

KL变换要求Y的分量Yj与Yk相互独立,且若有j<k,则Yj的方差小于Yk的方差,所以必须有:

滇东北铅锌银矿床遥感地质与成矿预测

又因为:

所以:

即把矩阵D(X)变为对角矩阵Λ,对角线元素λ1、λ2…λp是D(X)的特征值,也分别是Y1、Y2…Yp的方差。

KL变换后的新组分图像中,一般第一组分具有大量的信息,但它包含了地形、植被等因素,对地质体的区分而言就成为干扰因素;其他组分虽然具有小的方差,包含的信息量少,但它可能正好突出了区分某些地质体的信息。因此,当需要对诸多信息进行综合时,往往使用KL变换后的第一组分,当要求某种特征信息时就选择相关的其他主组分。如图3-10,在B7单波段上玄武岩和火山碎屑岩界线显示隐约(或不显示),而在KL变换(参与波段B1、B2、B3、B4、B5、B6、B7)后的PC3上,界线显示明显。

图3-10 KL变换前后岩性边界对比影像

此外,KL变换也是提取与铁化和泥化有关蚀变的遥感信息的重要方法。通过对KL变换后的特征矩阵进行分析,选择富集特征信息的主组分,对蚀变信息的提取又很大的帮助。在后面信息提取过程中已经使用。

(四)空间信息增强

空间信息增强是指通过改变图像空间特征或频率来增强图像上信息的手段,即改变图像的“粗糙”或“平滑”程度来增强特征信息的方法。工作中使用了方向滤波和平均值滤波。

1.方向滤波

方向滤波是梯度法边缘增强的一种,它通过指定的8个方向的滤波模块对图像按方向进行边缘增强。工作中主要使用在线性体的解译和统计中,滤波后的图像突出显示了某个方向的线性体特征,同时对与该方向正交的线性体进行模糊。如图3-11所示,7波段的图像在分别使用 个方向模板滤波后,分别突出显示了45°方向和135°方向的线性体。

图3-11 方向滤波前后图像对比

2.平滑滤波

当需要去除图像上的噪声时,往往使用平滑滤波或低通滤波,加强图像中的低频成分,减弱图像的高频成分,使图像由“粗糙”变得“光滑”。均值滤波就是一种典型的平滑滤波方法,即用局部范围内临域像元亮度均值代替中心原像元亮度值。工作中平滑滤波主要使用在遥感蚀变信息提取后,信息噪声的去除。如图3-12所示,提取的锈水河铅锌矿异常在平滑滤波后,杂乱细小的信息斑点被去除,信息成“块”成“带”出现,方便了对异常分布的分析。

图3-12 平滑滤波前后PCT分级效果对比

(五)彩色变换技术

彩色变换技术是指将彩色图像在不同的彩色坐标系统之间的变换,主要应用在不同遥感器的数据或不同性质的数据融合后彩色合成图像的产生。在图像融合上常使用IHS变换,其简式如下:

滇东北铅锌银矿床遥感地质与成矿预测

变换后RGB混色系统分离为代表空间信息的明度(I)和代表波谱信息的色别(H)、饱和度(S)。从公式可以看出,明度(I)是3个波段的平均亮度,融合时使用直方图匹配后的高分辨率波段代替I,与原来的H、S一起进行IHS变换的反变换,重新变换到RGB空间,这样图像既保证了高分辨率数据的参与,提高地面分辨能力,又保持了原来多光谱波段的光谱特征。其融合效果参见图3-5。

另外,项目工作中较常用的是RGB彩色合成,当图像的饱和度缺乏时,也通过IHS变换的方法,专门对变换后的饱和度分量(S)进行调整,反变换后的图像可解译性会明显提高。

㈢ DOTA V1.5数据集:基于航空图像的大规模目标检测数据集

  目标检测是计算机视觉任务中一个具有挑战性的方向。尽管在过去十年中目标检测在自然场景中有了重大突破,但是在航拍图像的进展是十分缓慢的,这不仅是因为地球表面相同类别物体的规模、方向和形状有着巨大的差异,而且还因为缺少航拍影像中目标对象的标注信息。为了推进“Earth Vision”(也称为“地球观测和遥感”)中目标检测的研究,我们提出了用于航拍影像中用于目标检测的大规模数据集(DOTA)。我们从不同的传感器和平台收集了2806个航拍影像,每张图像的大小约为4000*4000像素,并包含了各种不同比例、方向和形状的目标对象。航拍图像专家将这些DOTA数据集图像中常见的15种对象类别进行标注。完全注释之后的DOTA数据集图像包含188282个实例,每个实例都由四点确定的任意四边形(8 d.o.f.)标记。为了建立地球视觉中目标检测的基准,我们评估了DOTA上最新的目标检测算法。实验表明,DOTA能够代表真实的地球视觉应用,并具有一定的挑战性。

  Earth Vision中的目标检测是指在将地球表面感兴趣的物体(例如车辆、飞机场)定位并预测他们的类别。与传统的目标检测数据集相反,在传统的目标检测数据集中,物体的位置通常由于重力而以一种向上的姿态出现,航拍图像中物体的实例通常以任意状态出现,如图1所示,这取决于航拍视角的关系。
  由于计算机视觉领域的最新进展以及Earth Vision应用的高要求,有大量的研究者已经开始围绕航拍影像中的目标检测开展研究,这些方法中的大多数尝试将原有的目标检测算法应用在航拍影像中。最近,在基于深度学习的目标检测算法取得巨大成功的鼓舞下,Earth Vision的研究者们基于大规模数据集(ImageNet和MSCOCO数据集)预训练模型上进行微调网络的方法,使之在航拍数据集检测中有所改善。
  尽管这种基于微调的方法是可行的,但是如图1所示,航拍图像中的目标检测与常规的目标检测有着以下方面的区别:

  近年来,在一些较为依赖数据的研究中,数据集扮演着十分重要的角色,像MSCOCO这样的大型数据集在促进目标检测和图像捕捉研究方面发挥了重要的作用。当涉及到分类任务和场景识别任务时,ImageNet以及Places也很重要。
  但是,在航拍目标检测中,缺少像MSCOCO和ImageNet这样在图像数量和详细注释方面的数据集,特别是对于开发基于深度学习的算法时,这是Earth Vision研究的主要障碍之一。航拍目标检测对于车辆计数,远程目标跟踪和无人驾驶领域非常有用。因此,创建一个能实际应用的大规模数据集并提出富有挑战性的航拍目标检测基准对于促进该领域的研究十分必要。
  我们认为,一个好的航拍影像数据集应该具有以下四个属性:
1)大量的图片;2)每个类别都有很多实例;3)合适角度的目标注释框;4)许多不同类别的对象,这使得数据集能够应用到实际中。然而目前所公开的航拍数据集存在以下缺点:图像数据和类别不足,缺少更精细的注释以及分辨率过低。而且,它们缺少复杂性并不能足以应用再实际现实世界中。

  像TAS,VEDAI,COWC等数据集只关注车辆,UCAS-AOD包含汽车和飞机,HRSC2016只包含船只,虽然有标注细致的分类信息。但所有这些数据集在类别的数量上都是少的,这对它们在复杂场景的泛化适应上有所约束。作为对比,NWPU VHR-10数据集由10种类型的物体组成,而它的总实例数大概只有3000。关于这些已存在的数据集的具体比较细节在表1中给出。我们在第四部分可以看到,对比这些航拍数据集,DOTA具有更庞大的目标实例数目、随意但是均匀的方向,多样性的分类目录和复杂的航拍场景。此外,DOTA数据集中的场景与真实场景更加一致,所以DOTA数据集对于真实世界应用开发来说是更有帮助的。
  当涉及到普通对象数据集时,ImageNet和MSCOCO因其具有大量的图像、更多的类别和详细的注释而被大多数研究人员所选择。在所有对象检测数据集中,ImageNet的图像数量最多。但是每个图像的平均实例数远少于MSCOCO和我们的DOTA数据集,而且必须拥有干净的背景和精心选择的场景带来了局限性,DOTA数据集中的图像包含大量的对象实例,其中一些图片具有1000多个实例。 PASCAL VOC数据集在每个图像和场景的实例上与ImageNet相似,但是图像数量不足使得它不适合处理大多数检测需求。我们的DOTA数据集在实例编号和场景类型方面类似于MSCOCO,但是DOTA的类别不如MSCOCO那样多,因为可以在航拍影像中能清晰看到的对象时非常有限的。
  此外,在上文提到的大规模普遍目标检测基准中DOTA数据集的特别之处在于使用OBB方法注释,OBB可以很好的区分目标物体的离散与聚集,在第三部分详细描述了使用OBB注释目标物体的好处。在表2中对DOTA,PASCAL VOC,ImageNet and MSCOCO等数据集的比较中给出不同点。

  在航拍数据集中由于存在多种多样的传感器被使用的情况,导致数据集产生偏差。为了消除这些偏差,我们数据集中的图片是由多分辨率多传感器和多平台收集而来的,如谷歌地球。为了提高数据的多样性,我们收集的图片的城市是由图像判读方面的专家来挑选的。在挑选过程中,会记录下精确的地理坐标,来捕捉图片使得确保没有重复的图像。

  我们的DOTA数据集注释选择了15种类别,包括飞机、船只、储蓄罐、棒球内场、网球场、篮球场、田径场、海港、桥、大型车辆、小型车辆、直升飞机、英式足球场、环状交叉路口、游泳池。
  标注类别是由图像判读方面的庄家根据目标物体的普遍性和现实世界中存在的价值来挑选的,前十个类别在已有的数据集中很普遍,我们保留了下来,除了将交通工具的汽车分为大型和小型,因为两种类型的汽车在航拍图像上区别很大。其他的类别主要是由于现实场景的应用。我们选择直升机是考虑到航拍图像中运动物体具有重要的意义,环状交叉路口被选中是因为它在巷道分析中具有重要意义。
  要不要把“stuff”作为一类是值得探讨的,在SUN数据集中,一般说来没有明确的定义说明什么是stuff一类,比如海港、机场、停车场。但是,它们提供的语义信息是对检测有帮助的。我们只采纳了海港分类,因为它的边界容易定义,并且在我们的图片源信息中有丰富的实例。最后拓展的分类是足球场。
  在表2我们比较了DOTA和NWPU VHR_10,后者在先前存在的航拍图像目标检测数据集中有更多的分类数。而且DOTA在目录分类数目和每一类下的实例数目都远超过了NWPU VHR-10。

  我们考虑了许多不同的注释方法。在计算机视觉领域,许多视觉概念(比如区域说明,目标,属性,关系)都可以被一个注释边框说明,对边框的一个普遍描述一般采用 ,其中 表示位置, 是边框的宽和高度。
  没有一定方向的物体可以采用这种注释方式充分注释。然而,在航拍影像中的文本和物体以这种方式标记的边界框不能精确或紧凑地贴合物体的轮廓。如图3(c)所示的极端但实际的普遍存在情况和图(d)比起来,两个边界框之间的重叠是如此之大以至于最先进的对象检测方法也不能区分它们。为了解决这一问题,我们需要一种其他更适合面向这种有一定方向物体的注释方法。
  一个可选选项是采用基于 的边界框,它被应用于一些文本检测基准,即 ,其中 表示从边界框与水平方向的夹角度。但这种方法的缺点是依旧不能贴合围绕住那些不同部分之间可能有较大变形的物体。考虑到航拍图像中物体的复杂场景和物体的各种方位,我们需要放弃这种方法选择其他更灵活易懂的方式。一种可供选择的方法是使用任意四边形边界框,它可以被描述为: ,其中 表示图像中定向边界框的顶点的位置,顶点按顺时针顺序排列,这种方法在定向场景的文本检测中广泛使用。我们受到这些研究的启发,在注释物体时使用这种任意四边形边界框的方式。

  为了进行更具体的注释,如图3所示,我们强调了第一点 的重要性,该点通常表示对象的“首部”。对于直升机,大型车辆,小型车辆,港口,棒球钻石,轮船和飞机等类别,我们选择与之丰富的潜在用途有关的点作为起始点。对于足球场,游泳池,桥梁,地面田径场,篮球场和网球场类别来说,没有视觉上的线索来确定第一个点,因此我们通常选择左上角的点作为起点。
  我们在图4中展示了DOTA数据集中一些已经注释过的例子(不是全部的初始图像)

  为了确保训练数据和测试数据分布大致相同,我们随机选择原始图像的一半作为训练集,将1/6作为验证集,将1/3作为测试集。 我们将为训练集和验证集公开提供所有带有原始事实的原始图像,但不会为测试集提供。 为了进行测试,我们目前正在构建评估服务。

  与其他图像数据集相比,航拍图像一般尺寸很大。我们的数据集中图像的原始大小约为800×800到4000×4000之间不等,而常规数据集中的大多数图像(例如PASCAL-VOC和MSCOCO)则不超过1000×1000。我们在原始完整图像上进标注,而不将其分割成块,以避免将单个实例分割成不同碎片的情况。

  如图1(f)所示,我们的数据集在不同方向的实例中达到了比较好的平衡,这对于网络检测器的鲁棒性提升有很大帮助。此外,我们的数据集更接近真实场景,因为在现实世界中通常会看到各种方向的对象。

  我们还为数据集中的每幅图像提供了空间分辨率,这可以推断出实例的实际大小。空间分辨率对检测任务的重要性有两个方面。首先,它使模型对于相同类别的各种对象更具适应性和鲁棒性。众所周知,从远处看物体会显得更小。具有不同大小的同一对象会给模型造成麻烦并损害分类。但是,通过提供分辨率信息而不是对象的大小,模型可以更加关注形状。其次,可以进行进行更精细的分类。例如,将一艘小船与一艘大型军舰区分开是很简单的。
  空间分辨率还可以用于过滤数据集中标记错误的离群值,因为大多数类别的类内实际大小变化是有限的。在较小的空间分辨率范围内,选择与同类物体尺寸相差较大的物体,可以发现离群值(Outliers)。

  按照[33]中的规定,我们将水平边框的高度(简称为像素大小)称为实例大小的度量。我们根据水平边界框的高度将数据集中的所有实例分为三个部分:较小的范围为10到50,中间的范围为50到300,较大的范围为300以上。图3说明了不同数据集中的三个实例拆分的百分比。显然,PASCAL VOC数据集,NWPU VHR-10数据集和DLR 3K Munich Vehicle数据集分别由中间实例,中间实例和较小实例主导。但是,我们在小实例和中间实例之间实现了良好的平衡,这与现实世界场景更加相似,因此有助于在实际应用中更好地捕获不同大小的对象。
  值得注意的是,像素大小在不同类别中有所不同。例如,车辆可能小到30像素,但是桥梁可能大到1200像素,比车辆大40倍。不同类别实例之间的巨大差异使检测任务更具挑战性,因为模型必须足够灵活以处理极小的物体。

表3:航拍图像和自然图像中某些数据集的实例大小分布比较

  对于基于锚的模型,例如Faster RCNN和YOLO V2,长宽比是至关重要的因素。我们对数据集中所有实例的两种长宽比进行计数,以提供更好的模型设计参考:1)最低程度受限于水平边界框的横纵、2)原始四边形边框的长宽比。图5说明了我们数据集中实例的两种纵横比分布类型,我们可以看到实例的纵横比差异很大。此外,DOTA数据集中有许多横纵比较大的实例。

  航拍图像中常常包括数以千计的实例,它们完全与自然场景图像不同。例如IMANEET数据集中每张图像平均包含2个类别和2个实例,MSCCO共有3.5个类别、7.7个实例。如图5所示我们的DOTA数据集更丰富,每个图像的实例可以高达2000个。
  在一幅图像中有如此多的实例,不可避免地会看到很密集的实例聚集在某个区域。在COCO数据集中,实例并不是逐个注释的,因为图像中的遮挡使之难以将实例与其相邻实例区分开来。在这些情况下,实例组被标记为一个属性名为“crowd”的片段。然而,这种情况不会在航拍图像下出现,因为从航拍视角来看,很少有遮挡物。因此,我们可以在拥挤的实例场景中将实例一个个分别标注。图4展示了聚集着很多实例的一个例子。在这种情况下检测物体对现有的检测方法提出了巨大的挑战。

  我们在DOTA上评估了最新的物体检测方法。对于水平物体检测,我们谨慎地选择Faster R-CNN,R-FCN,YOLO V2和SSD作为我们的基准测试算法,因为它们在一般物体检测中具有出色的性能。对于定向对象检测,我们修改了原始的Faster R-CNN算法,以便可以预测正确定向的边界框,表示为 。
  值得注意的是,R-FCN和Faster R-CNN的骨干网络分别ResNet-101,用于SSD的是Inception V2,YOLO V2用的是GoogLeNet 。

  为了全面评估基于深度学习的DOTA检测方法的现状,我们提出了两个任务,即在水平边界框(简称HBB)上进行检测以及在定向边界框(简称OBB)上进行检测。更具体地说,无论采用何种方法训练,我们都根据两种不同的基础事实(HBB或OBB)评估这些方法。

  DOTA的图像太大,无法直接发送到基于CNN的探测器。因此,我们将原始图像裁剪为一系列1024*1024的面片,步幅设置为512。注意在裁剪过程中,完整的物体可能会被切成两部分。为了方便起见,我们将原始对象的面积为 ,划分部分 的面积为 然后计算:
  最终我们将U<0.7的部分标记为“difficult”,其他的标记和原始注释一样。对于那些新生成的部分的顶点我们需要保证它们可以被一个具有4个顺时针排列顶点的定向边界框用一种合适的方法来描述。
  在测试阶段,我们首先将裁剪后的面片送到一个临时的结果中,然后将结果合并在一起,来重构原始图像的检测,最后我们对预测结果使用NMS(非极大值抑制算法)。我们设置NMS的参数阈值对于水平边界框(简称HBB)将阈值设置为0.3,定向的边界框阈值设置为0.1。通过使用这种方式,我们在基于CNN的模型上训练和测试了DOTA数据集。
  对于评价的度量,我们使用和PSASCAL VOC一样的mAP计算方式。

  HBB实验的ground truth 是通过在原始的已标注的边界框上计算轴对称边界框产生的,为了公平起见,我们将实验的配置以及超参数设置为与文章[4,16,25,26]一致。
  在表4中给出了HBB实验的预测结果,我们注意到SSD上的结果比其他模型低很多。我们怀疑可能是因为SSD数据集数据增长策略中的随意裁剪操作,这种操作在普通的目标检测中有用,但是在航拍图像目标检测的大规模小实例上作用有所降低。实验结果也进一步表明了航拍图像和普通目标图像检测在实例大小上的巨大差别。

  OBB的预测比较困难,因为现有的目标检测方法并非针对定向对象而设计。因此,我们依据准确性和效率选择Faster R-CNN作为基础框架,然后对其进行修改使之能预测定向的边界框。
  由RPN(候选区域生成网络)产生的RoIs(兴趣区域)是可以被表示为 的矩形框,更为详尽的解释是 。在R-CNN程序中,每个RoI都附加有一个ground truth定向边界框写作: ,然后R-CNN的输出目标 由以下等式计算:

其中 。
  其他配置和超参数设置保持与Faster R-CNN中所述相同。数值结果显示在表5中。为了与我们为OBB实施的Faster R-CNN进行比较,我们评估了OBB地面实况在HBB上训练的YOLO V2,R-FCN,SSD和Faster R-CNN。如表5所示,在HBB上训练的那些方法的结果比在OBB上训练的Faster R-CNN的结果低得多,这表明对于空中场景中的定向目标检测,相应地调整这些方法可能会得到更好的结果。

  当我们分析表4中呈现的数据结果时,小型汽车,大型汽车,船只的分类结果不尽人意,因为它们的尺寸较小,并且在航拍图像中位置十分密集。然而大型的离散物体如飞机,游泳池、网球场等,表现出的效果较好。
  在图6中我们比较了HBB和OBB两种检测方式的结果。在图6(a)和6(b)中表示的紧密图像中,HBB实验的定位精度要比OBB实验差的多,并且许多结果受到先前工作的限制。所以OBB回归是定向物体检测的一个正确方式,并且可以被真正在实际中应用。在图6(c)中,使用OBB来标注纵横比较大的物体(比如桥和海港),对于现在的检测器来说很难做回归。但是在HBB方法中,这些物体通常有着较为普通的纵横比,因此结果如图6(d)看起来比OBB好很多。但是在一些极度拥挤的场景下,比如图6(e)和6(f),HBB和OBB的结果并不尽如人意,表明了现阶段检测器具有一定的缺陷。

  交叉数据集验证是数据集泛化能力的一个评价方式。我们选择UCAS-AOD数据集来做交叉数据集泛化,因为它与其他航空物体检测数据集相比有着更大的数据量。因为没有UCAS-AOD数据集的官方划分方式,于是我们随机选择1110个进行训练和400个进行测试。选择YOLO V2作为所有测试实验的检测器,并且将所有的ground truth使用HBB标注。将UCAS-AOD数据集中原始图片大小改为960*544作为输入的图片大小,其余的配置不改变。
  结果显示在表6中,对于YOLOv2-A模型而言两个数据集之间的性能差异分别为35.8和15.6。这表明DOTA极大地覆盖了UCAS-AOD,并且具有更多的模式和特性,而UCAS-AOD则不具备这种特性。两种模型在DOTA上的结果都很低,这表明DOTA更具挑战性。

  我们建立了一个大型数据集,用于航拍图像中进行定向物体检测,这个数据集比这个领域中所有现有的数据集都要大。 与一般对象检测基准相反,我们使用定向边界框标注大量分布良好的定向物体。 我们猜测这个数据集是具有挑战性的,并且非常类似于自然的航拍场景,更适合实际应用。我们还为航拍图像物体检测建立了基准,并展示了通过修改主流检测算法生成定向边界框的可行性。
  这个数据集在大图片中检测密集排列的小实例和具有任意方向的超大实例都将特别有意义且具有挑战性。我们相信DOTA不仅会推动Earth Vision中物体检测算法的发展,而且还会对计算机视觉中的一般物体检测提出有趣的问题。

㈣ 泰坦遥感图像处理软件的Titan Image V8.0特点

1、强大的数据支持能力
1) 能够直接操作PCI PIX、TIF、GEOTIFF、BMP、JPEG、RAW主流遥感影像数据格式,并支持Titan GIS 、ArcView SHP、MapInfo MIF、DXF等上百种数据格式的读取、转换。
2) 具备开放、灵活的底层架构,提供强大的对新增数据源支持能力
2、丰富高效的遥感图像处理功能 持国内外主流遥感影像的高精度处理功能 提供上百种核心遥感影像处理工具供用户选择 集成高空间分辨率卫星数据及航空数据处理、高光谱、雷达数据处理功能,满足用户多种需求 3、方便友好的操作方式
基于国内用户使用习惯的深入调研和理解,提供贴合用户操作习惯的使用流程,界面友好,操作方便,易学易用;
支持多任务处理功能,允许用户同时执行多个处理操作。系统以后台执行操作的方式,并行执行多个处理任务。提高图像处理的效率,节省用户的时间。
4、强大的GIS功能
支持大多数常用GIS数据源,提供对矢量库、影像库、影像文件、各种GIS专题数据的叠加显示及地图整饰工作;提供了高质量、专业化的影像图制作。
5、丰富的二次开发函数库 提供多达上百种的C++图像处理算法库和灵活多样的算法扩展实现模式,支持VC++开发环境; 2) 提供细颗粒度开发组件,支持.NET、C++开发环境。
6、紧密的更新升级机制 密跟踪国产遥感卫星发射计划,快速实现对新增传感器的支持,以提供对TH、ZY-3、ZY02-C的支持 密切跟踪国家相关标准规范修订,确保软件系统的同步更新 关注用户体验,针对用户反馈及时更新 三、Titan Image V8.0 新特性 新增无人机数据处理模块:针对国土、环保、林业等行业的应急保障需求,提供无人机数据的快速定向、自动匹配、空三处理、正射校正以及镶嵌功能,操作简便、高效快捷、通用性强 新增基于卫星遥感影像立体像对的DEM提取功能:能处理P5、天绘、资源三号等多种传感器,支持DEM快速生产; 新增影像自动接边功能:针对影像镶嵌时重叠区域出现错位的问题,提供自动接边处理功能,有效纠正范围可达50个像素,为用户提供高质量的镶嵌结果; 全新的高光谱数据处理模块:从实际工程应用出发,增加多种独创的高光谱处理函数,极大丰富了原有的算法库,能处理主流高光谱卫星遥感数据及实验室光谱仪数据,为高光谱数据用户提供更加专业、实用的高光谱数据处理方法; 全新组织的影像工具箱:对影像工具箱的功能进行了重组,新增遥感影像立体像对DEM提取功能,并集成了原几何配准、影像镶嵌模块,提高了影像工具箱的影像处理能力 改进面向对象分类功能:改进图像分割算法的运行效率,能更好的支持大数据量的分割,提高面向对象分类的实用性 改进影像镶嵌功能:对自动镶嵌线生成算法进行了重新设计,提高镶嵌效率; 四、Titan Image V8.0 产品功能 Titan Image8.0流程化定制模块提供一个工作流处理的定制工具,提供了遥感图像常用操作和处理算法,用户只需根据数据处理的要求,很方便地定制所需的数据处理流程,系统即可根据用户的要求自动、批量地处理图像数据。用户也可以根据数据处理要求的变化而相应地更改数据处理流程。 可视化操作界面; 可定制与扩展的数据处理流程; 批处理与高效性。 重点项目介绍:
遥感数据处理商用软件(863重点项目)
遥感数据处理商用软件项目由北京东方泰坦科技股份有限公司主持,采用遥感领域成熟的研究成果和先进的软件开发技术,研制开发了完全自主知识产权、实用、可靠、先进的泰坦遥感图像处理软件系统,该系统目前已达到了和国际知名遥感图像处理软件同等技术水平。系统由软件集成环境、几何校正,影像镶嵌,雷达数据处理,高光谱数据处理,高空间分辨率数据处理、三维飞行、影像库服务管理九个主模块组成,同时具有强大的二次开发功能,满足了我国各行业遥感应用的需要。目前该软件已经在众多行业得到了广泛的应用,被很多行业用户选定为本行业的底层支撑软件平台;获得了国家多部门多次表彰,并被指定为“国家级重点新产品”。
多源遥感数据处理与服务系统(863重点项目)
该项目由北京东方泰坦科技股份有限公司牵头武汉大学、中科院遥感应用研究所、中国测绘科学研究院三家单位共同参加完成的面向国家和行业部门提供大范围、综合、高效的多源遥感数据处理与应用服务,实现我国自主卫星遥感数据综合化、流程化处理与应用。该系统借鉴国际多源遥感处理和产品加工前沿技术,建立专业的遥感图像加工处理系统(高分辨率处理专业模块、SAR数据专业处理模块、高光谱数据处理专业模块和红外遥感数据专业处理模块),为“多源遥感数据综合处理与服务系统”提供技术支撑。 该项目的成果,为我国自主产权的大数据量遥感数据快速并行处理系统奠定了基础。
投资项目遥感动态监测与管理信息系统(863重点项目)
北京东方泰坦科技股份有限公司作为项目承担单位负责整个项目的管理和核心技术的攻关及产品研发。该项目针对国家统计局在投资项目动态监测与管理方面的重大需求,通过制定相关标准和规范,基于遥感技术,结合GIS、GPS技术,研究对投资项目进行遥感动态监测与管理的机理、模型和技术方法,建立投资项目遥感动态监测与管理业务运行系统。该系统解决了目前统计业务中空间地理信息缺乏、数据更新迟缓、实地取证困难、数据难保真等方面的问题,全面提升对投资项目的宏观监测管理水平,为国家统计局投资司的投资项目监测管理业务实现“阳光统计”、“科学统计”提供技术手段,为投资项目的重点监测与预警、快速遥感调查应急反应、统计辅助巡查等提供新的技术支撑和信息服务。该项目的成果,在重点投资项目的实施监测、用地监测管理等应用中,得到广泛应用。
泰坦 (Titan)大型空间信息处理系统软件平台(北京市科技攻关重大计划)
本项目在泰坦GIS、遥感、制图等软件基础上,研发形成了可以支撑大型空间信息处理应用的软件平台,该平台可以进行遥感图像的网络分布式处理,海量空间数据管理,研制了空间信息应用开发组件库,特别是在大型空间信息处理系统平台集成技术上的创新成果,得到了专家组的一致认可。项目成果在“北京一号小卫星深加工”、“网络导航及产业链构造”等多个民用和军用项目中得到应用,开发了国内各领域的大量用户,取得了很好的经济和社会效益,项目成果荣获2006年“北京市科技进步二等奖”,较好地推动了我国自主创新的空间信息软件行业的发展。
土地整理遥感监测技术研究与应用(863项目)
该项目是国家科技部在对地观测与导航领域设立的863专题项目,项目对遥感技术及地理信息系统在土地整理中的应用进行了深入研究。主要包括基于遥感数据的土地资源整理标准研究,基于成像光谱与雷达数据等多源数据融合的土地质量信息提取,基于“3S”技术的全国、区域、县域和乡级不同尺度的土地资源调查、监测技术方法体系构建。该项目由国土资源部有关部门具体组织协调管理,由北京东方泰坦科技股份有限公司具体实施完成。该项目成果为土地变化的快速监测,建库管理提供了基础。
高(多)光谱遥感矿物蚀变信息提取技术及软件开发(863项目)
该项目是国家科技部在资源环境技术领域设立的863专题项目,由北京东方泰坦科技股份有限公司具体实施完成。根据冶金勘查部门的具体应用要求,北京东方泰坦科技股份有限公司完成了基于GIS的遥感图像标准制图技术与规范文本,研发完成了遥感矿物蚀变信息提取技术的软件系统以及示范区的系列应用成果。形成了一套比较完备的遥感矿物蚀变信息提取的方法体系和工程化的解决方案(或工作流程);构建了不同地质与生态景观区遥感矿物蚀变信息提取的最佳方法组合模式;提交了一套遥感矿物蚀变信息提取技术的软件系统。该系统在西藏地质勘查及南非找矿中,被有关部门广泛采用。
大数据量数据压缩、传输与规模化处理关键技术研究(国防科工委“十一五”民用遥感卫星应用技术研究项目)
该项目是国防科工委在“十一五”我国民用遥感卫星应用技术发展领域设立的研究项目,项目完成了建立统一的大数据量航空、航天遥感数据的存储和管理模型,大数据量遥感影像的快速高质量压缩机制,大数据量遥感数据的大规模处理平台三大任务。该项目研究了包括海量空间数据的压缩算法研究、海量高速率数据的实时传输与记录研究、高性能遥感数据处理技术研究等,为遥感空间数据的快速压缩、网上发布与处理奠定了基础。

㈤ 遥感影像的三种主要格式定义

遥感图像包括多个波段,有多种存储格式,但基本的通用格式有三种,即BSQ、BIL和BIP格式。

1、BSQ(band sequential)是像素按波段顺序依次排列的数据格式。即先按照波段顺序分块排列,在每个波段块内,再按照行列顺序排列。同一波段的像素保存在一个块中,这保证了像素空间位置的连续性。

2、BIL(band interleaved by line)格式中,像素先以行为单位分块,在每个块内,按照波段顺序排列像素。同一行不同波段的数据保存在一个数据块中。像素的空间位置在列的方向上是连续的。

3、BIP(band interleaved by Pixel)格式中,以像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。保持行的顺序不变,在列的方向上按列分块,每个块内为当前像素不同波段的像素值。

(5)dota遥感图像像素为多少扩展阅读

各类遥感图像都存在在几何校正的问题。由于人们已习惯使用正射投影的地形图,因此对各类遥感影像的畸变都必须以地形图为基准进行几何校正。几何校正大致如下:

①选择控制点:在遥感图像和地形图上分别选择同名控制点,以建立图像与地图之间的投影关系,这些控制点应该选在能明显定位的地方,如河流交叉点等。

②建立整体映射函数:根据图像的几何畸变性质及地面控制点的多少来确定校正数学模型,建立起图像与地图之间的空间变换关系,如多项式方法、仿射变换方法等。

③重采样内插:为了使校正后的输出图像像元与输入的未校正图像相对应,根据确定的校正公式,对输入图像的数据重新排列。在重采样中,由于所计算的对应位置的坐标不是整数值,必须通过对周围的像元值进行内插来求出新的像元值。

㈥ 分辨率是单位长度的像素数,为什么在遥感影像处理中分辨率单位是米

1、分辨率是一个总概念,除了影像分辨率以外,还有空间分辨率、光谱分辨率、辐射分辨率等等,其含义和要素各有不同;
2、单就影像分辨率而言,通常是指单位长度的像素数。但影像分辨率是一个总概念,其中还细分不同的子分辨率。不同的子分辨率,单位长度的标准是有不同的;
3、影像分辨率中单位长度虽然各有不同,但各个具体领域中的影像分辨率的单位长度,都是有全球共识的默认的独立的标准。如果不采用默认共识的长度标准,则需要自行换算;
4、家用( 或普通 )领域的影像分辨率,单位长度通常确定为英寸,比如打印( 喷绘 )分辨率( DPI )是指每英寸墨点数,显示分辨率( PPI )是指每英寸像素数。有些地方比如中国大陆有不习惯采用英寸的,测可换算为毫米;
5、专业领域的影像分辨率,单位长度标准各有不同。比如显微影像的分辨率单位长度是微米,航空和卫星影像的分辨率单位长度就是米,等等;
6、遥感分辨率用于航空影像和卫星影响,故分辨率的标准单位长度就是米;
7、有些实验室为了便于比较、通常将分辨率的单位长度统一为某个约定俗成的单位,比如统一换算为英寸等,但其本质是一样的;
8、至于有其他网友说的相机全画幅与手机的区别,与分辨率单位长度风马牛不相及,更是与遥感分辨率毫不相关。全画幅与手机影像的区别,是在传感器 ADC 技术相同时( 当然还有镜头和处理器 ),像素总数( 决定输出画幅 )和像素密度( 决定影响质量 )的区别,这与遥感影像分辨率不搭界的。

㈦ 谁能告诉我遥感影像的空间分辨率、光谱分辨率、时间分辨率分别是什么含义遥感影像还有哪几种分辨率

遥感影像还有地面分辨率、影像分辨率。

1、空间分辨率,是指遥感图像上能够详细区分的最小单元的尺寸或大小,是用来表征影像分辨地面目标细节的指标。通常用像元大小、像解率或视场角来表示。

2、光谱分辨率,是指传感器所能记录的电磁波谱中,某一特定的波长范围值,波长范围值越宽,光谱分辨率越低。

3、时间分辨率,是指在同一区域进行的相邻两次遥感观测的最小时间间隔。对轨道卫星,亦称覆盖周期。时间间隔大,时间分辨率低,反之时间分辨率高。

4、地面分辨率,是衡量遥感图像能有差别地区分开两个相邻地物的最小距离的能力。超过分辨率的限度,相邻两物体在图像上即表现为一个单一的目标。

5、影像分辨率,是指遥感分辨率在不同比例尺的具体影像上的反映。遥感分辨率随遥感影像的比例尺不同而变化, 像素和分辨率是成正比的,像素越大,分辨率也越高。

(7)dota遥感图像像素为多少扩展阅读:

传感器的波段数越多,波段宽度越窄,地面物体的信息越容易区分和识别,针对性越强。成像光谱仪所得到的图像在对地表植被和岩石的化学成分分析中具有重要意义,因为高光谱遥感能提供丰富的光谱信息,足够的光谱分辨率可以区分出那些具有诊断性光谱特征的地表物质。

对于特定的目标,选择的传感器并非波段越多,光谱分辨率越高,效果就越好,而要根据目标的光谱特性和必需的地面分辨率来综合考虑。在某些情况下,波段太多,分辨率太高,接收到的信息量太大,形成海量数据,反而会掩盖地物辐射特性,不利于快速探测和识别地物。

参考资料来源:

网络——空间分辨率

网络——光谱分辨率

网络——时间分辨率

网络——地面分辨率

网络——影像分辨率

㈧ 遥感中的精度(如30米)与地图学中的比例尺(如1:1000)有什么区别

这两者之间没有什么联系。

遥感中讲的30米是指,一幅遥感影像中,每个像素(像素是什么应该知道吧)对应地面距离为30米。这个术语叫做地面分辨率。本质上是地面30×30米大小的地方,对应遥感图像中的一个像素。

将地图学中讲的1:1000比例尺地图一幅,变成图像后,每个像素代表的距离为:
25.4毫米 × 图像分辨率(如400dpi)× 地图比例尺(1000)= 63.5毫米=0.0635米
也就是说,在按400dpi扫描的1:1000地图中,每个像素代表实地距离0.0635米。
但是要注意,这个0.0635米与遥感中的“地面分辨率为0.0635米”不是一个概念。

㈨ 卫星分辨率的概念

分辨率可以从显示分辨率与图像分辨率两个方向来分类。

显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。

图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。

世界高分辨率卫星排名:

随着认识地球、研究地球的深入,人类逐渐将视点从地面、低空扩展到太空,对地球的观测也越来越对连续性、快速性、精确性等提出了更高要求。
高分辨率对地观测卫星随之进入了人类的视野,它们个个“身怀绝技”,以便更全面、更清楚、更深刻地了解地球及其周围环境,成为人类在太空安装的高效“监控眼”。
高分市场军用领跑
简单来讲,高分辨率对地观测卫星可以划分为军用和民用两类用途,而且二者都有广阔的应用市场。
军用遥感卫星和民用遥感卫星在原理上并无二致,主要区别体现在卫星所使用的谱段和对地面分辨率要求上的差异。军用遥感卫星主要在可见光或近红外谱段成像,分辨率优于1米。

也正因此,军用遥感卫星大部分都属于高分辨率对地观测卫星,只有少数用于普查的军用遥感卫星为了提高时间分辨率,而选择较高的运行轨道,从而使得卫星的空间分辨率有所减弱。
与之相比,民用遥感卫星则主要在多光谱成像,以便识别地面各种特征,其分辨率高低差异参差不齐,但其总体水平普遍在军用卫星之下。
在军用高分辨率光学成像遥感卫星领域,美国锁眼12号卫星最为突出。它采用了大面阵探测器、大型反射望远镜系统、数字成像系统、自适应光学成像技术、实时图像传输技术等,镜头口径3米,焦距27米,分辨率达0.1米。

热点内容
绝地求生未来之役比赛为什么进不去 发布:2023-08-31 22:07:08 浏览:1267
dota2位置什么意思 发布:2023-08-31 22:00:04 浏览:710
lol电竞是什么样子 发布:2023-08-31 21:58:40 浏览:1165
绝地求生八倍镜的那个圆圈怎么弄 发布:2023-08-31 21:58:31 浏览:1231
lol龙龟一个多少金币 发布:2023-08-31 21:55:07 浏览:617
王者如何改游戏内名称 发布:2023-08-31 21:55:06 浏览:907
游戏主播打广告是什么意思 发布:2023-08-31 21:55:06 浏览:1562
绝地求生如何免费拿到ss7赛季手册 发布:2023-08-31 21:52:13 浏览:781
pgg是哪个国家的战队lol 发布:2023-08-31 21:52:07 浏览:663
一个人的时候才发现游戏很没意思 发布:2023-08-31 21:49:24 浏览:1263