当前位置:首页 » 游戏种类 » 数学史小游戏

数学史小游戏

发布时间: 2022-07-02 17:36:35

1. 简述在小学数学课堂中如何渗透数学文化

一、教师要将教材中的数学文化进行深入挖掘
数学文化在课堂教学中的融入一直是数学教学的重要目标。在小学数学教材中有许多文化因素。正是这些数学文化,使得小学课本内容更具有趣味性与生活性,使得小学生愿意对课本中的内容进行阅读与学习。一般来讲,课本上的数学文化经常是与数学知识相结合的,是为了引出数学知识而存在的。数学文化与数学知识一起,为小学生打造了一个丰富多彩的数学世界。也正是数学文化使得学生认清了数学与生活之间的关系,更立体地对待与观察数学学科,产生数学学习兴趣。
在小学数学教学实践中,教师可利用适当的时机对数学文化进行介绍。比如在学习小数的时候,教师可以从小数的进制方面对十进制及十进制的由来进行分析。教师可以对我国引出十进制的数学家刘徽进行介绍,提出我国早在1700多年前就开始使用十进制计数法。这样,学生在学习小数知识的同时,也可对我国的数学发展历史有一定的了解,在数学文化的了解与学习过程中产生强烈的民族认同感。
小学数学教师要重视自身素质的提高,对数学课本中存在的文化因素进行深入挖掘,使数学文化服务于数学知识的讲授。只有这样,学生才能在学习数学的时候了解到更多的文化知识,认识到数学的文化价值,提高数学学习兴趣。
二、教师要挖掘数学文化中的丰富情感、态度和价值观
首先是如何正确对待数学史料的问题。历史往往沉淀下许多值得流传的史实与价值观念。我们不能仅仅停留于对史实的介绍上,而应引导学生透过史实,触摸到史实背后的价值和观念,使其构成一种更有教育意义的积极影响。如祖冲之是中国古代研究圆周率的骄傲,但仅到此为止,并进行肤浅的爱国主义教育是不够的。他在研究过程中如何“借助正多边形周长研究圆周长”的数学思想和智慧;他不满足于既有结论,不断超越、执着奋进的探索精神等,更应该透过课堂浸润到学生的内心深处。我在教学时,将这一段数学历史有机融入到具体的周长公式的探索过程中来,学生的感受更丰富了,认识也更全面了。此外,我还适时地介绍了我国古代数学的领先与现代数学的落后,并给学生分析造成这一后果的内在原因,深刻的民族尊严感和为中华数学之崛起而奋斗的决心在学生心中升腾。
三、教师要在教学中凸显数学学科的文化属性
一些小学生认为数学与语文这类文化类的科目是相互对立的,数学与文化没有任何关系。这就要求数学教师在教学之时,突出数学学科的文化属性,使学生认识到数学文化的存在。数学是一门理论性较强的学科,学生在学习数学的时候,对于一些数学定义与规则都要进行死记硬背,这使得学生的学习积极性受到打击,对于数学学科的发展也有负面影响。因此,在教学实践中,教师要引导学生更多地了解数学与生活之间的联系,使学生认识到数学知识与社会文化是密切相关的。
四、教师要立足课堂推进数学文化发展
课堂是一切教学研究的试验基地。数学文化在小学数学教学中的有效渗透途径最终要落实在课堂上,只有当教师和学生在课堂交流互动中自觉有意识地关注、领悟数学文化的价值,才能不断推进数学文化的发展。因此,教师要针对数学文化的特点,在小学数学课堂教学中积极渗透、有效实施并逐步形成一系列优秀教学案例。
比如在进行《圆》的讲解时,教师就可以让学生自主发现生活中的圆形,将数学学习与生活实践进行很好的结合。另外,教师要从中国传统文化的角度对圆形进行分析,中国人之所以喜欢圆,是因为圆无棱无角,象征着圆满与安全等。在这样的文化氛围之下,学生会对数学知识有全新的认识。小学数学课堂需要数学文化的支撑,在这样的文化影响下,学生会摆脱对于数学的刻板枯燥的印象,认识与学习数学文化。
五、教师要在课堂教学中丰富数学活动形式
数学活动是数学学习过程中的重要组成部分,教师可以利用丰富多彩的数学活动,使学生了解数学文化。游戏与竞赛是小学生喜爱的活动类型,老师可以利用竞赛小游戏引导学生对数学文化进行学习。在进行数学知识的讲解时,教师可以就与学习知识相关的数学文化进行提问,当有学生回答出时,教师给予奖励。并告诉学生,在下节课,教师还要就数学知识相关的数学文化进行提问,请同学们做好准备。在第二节课,教师可以利用抢答的形式组织学生对数学文化问题进行回答,抢答正确的学生可以获得小红花一枚。在这样的活动之下,学生的数学文化学习积极性会得到提高,学习热情也会随之高涨。
六、教师要善于利用数学文化激发学生兴趣
不同时空数学思想的对比,有利于拓宽学生的视野,培养学生全方位的认识能力和思想境界,还能让学生了解到不同文化背景下的数学观。现行的小学数学实验教材较多地介绍了数学发展的趣事轶闻、辉煌成就、数学家传记、一些数学概念产生的背景资料等数学文化资源。在教学中,适时地向学生介绍这些数学文化,可以丰富教学内容,拓展学生眼界,提高学生的学习兴趣。如:希腊数学家埃拉托斯特尼发明的寻找质数的方法、哥德巴赫猜想、分数产生的历史、“鸡兔同笼”等内容。因此,数学课堂教学中要让学生了解一点数学史,适时进行数学发展中的趣闻轶事、数学典故、数学家传记的教育。教学时结合具体内容,适时地穿插这些数学文化,更能激发学生学习数学的兴趣。

2. 谁有新课标《用字母表示数》第一课时的教案

《用字母表示数》教案
一、教学目标:
1.使学生在现实情境中理解并学会用字母表示数,会用含有字母的式子表示数量、数量关系和计算公式,学会含有字母的乘法算式的简便写法。
2.使学生经历把实际问题用含有字母的式子进行表达的抽象过程,体会用字母表示数的概括与简洁,发展符号感。同时,增强对数学的好奇心和求知欲。
二、教学重点难点
1、教学重点:理解用字母表示数的意义,会用含有字母的式子表示数量。
2、教学难点:能用含有字母的式子表示数量,体会字母表示数的优越性。
三、教学过程
(一)新课导入,揭示课题
1、用生活中熟悉的标志引出“字母”
师:同学们,我们生活中到处可以看点各种各样形形色色漂亮的标志,那么,你认识这个标志吗?
(1)、出示中央电视台台标
师:你知道这是什么标志吗?指名回答。
(2)、出示肯德基标志
师:那么,这个是什么标志呢?一起回答。
师:刚才的两个标志都是用什么表示的呢?(板书:字母)
生活中用字母来表示一些事物是不是很简洁呀、很能概括一些东西的呀,你再能举一些例子么?指名回答。
2、用字母表示数特定的数
(1)、出示纸牌图
师:大家的知识面真广,那么字母除了这些事物标志之外,还能在那些地方用到呢?我们一起来看一下。(出示纸牌)
师:大家玩过算24点吗?你能快速算一算吗?
师:大家算的很好很快。可是,在算24点的时候没有1呀?(A表示1)
(2)、出示连续的偶数
师:我们继续来看(出示一组连续的偶数),这是一组连续的偶数,这里面的m又表示什么呢?一起说吧。
师:像刚才纸牌中的A以及连续偶数中的m都是用来表示什么的呢?(板书:数)
师:这就是我们这节课要来研究的:用字母表示数(完成板书)。这里A表示1、m表示8(板书:A=1,m=8),我们就说A和m这两个说表示的特定的数。(板书:特定的数)那么字母除了表示一个特定的数之外它还能表示什么呢?我们一起来看。
(二)互动探索,教学新课
1、探索用字母表示数(出示一个三角形)
师:老师给大家带来了一个摆好的三角形(出示1个三角形),如果要摆这样的1个三角形要用几根小棒呢?你能用式子怎么表示吗?(板书:1×3)在这个式子里1表示什么?(三角形的个数)3表示什么呢?(每个三角形需要小棒的根数)
师:如果摆2个这样的三角形需要几根这样的小棒呢?(出示2个三角形)你能用算式表示吗?(板书:2×3)
师:如果摆3个这样的三角形需要几根这样的小棒呢?(出示3个三角形)你能用算式表示吗?(板书:3×3)
师:如果摆4个这样的三角形需要几根这样的小棒呢?(课件出示)你能用算式表示吗?(板书:4×3)
师:像这样的三角形我们还可以继续摆下去,可以摆5个、摆6个等等。你能用不同的式子表示出摆不同个三角形时所用的小棒的根数吗?(在自备本上写下去)
提问:谁能告诉老师你有什么发现?(一个不变的数3,一个变化的数)那么,像这样的式子我们永远都写不完,你能想一个办法用一个式子来概括我们所要写的所有式子吗?(板书学生写的式子,比如a×3)说说你的想法?(引导学生说出a表示许多变化的数)你和这位同学一样吗?请你再来说说。
师:很好,这里字母a表示的是许多变化的数(板书:变化的数)
说明字母不仅可以表示一个特定的数还可以表示许多变化的数。同时可以用不同的字母来表示变化的数。
提问:在这里a能表示哪些数呢?(自然数)想想这里面的a能不能表示小数呢?指名回答为什么?那能不能表示分数呢?看来字母表示的数是有一定的范围的。
2、探索用字母表示数量关系
师:同学们请看大屏幕,学校参加兴趣小组,有美术组24人,现在已知了书法组比美术组多6人,你能提出什么问题?(生:书法组又多少人)书法组哟多少人呢?怎么列式?(生:24+6 =30人)24+6表示什么呢?(生:书法组又多少人?)
师:已知了舞蹈组比美术组多9人,你又能提出什么问题呢?(生:舞蹈组又多少人)舞蹈组又多少人呢?怎么列式?(生:33人 24+9)24+9表示什么呢?(生:舞蹈组有多少人?)
师:看这个你会吗?已知了合唱组比美术组多x人,你能提出什么问题呢?(生:合唱组有多少人?)有多少人?怎么列式?(生:有24+x人 24+x)24+x表是什么呢?(生:合唱组有多少人?)
师:当我们知道“x”表示的是多少时,我们就能确定“24+x”表示的是多少人,那么现在已知了x=10,可以求出24+x的值,学生举手回答(生:---)
师小结:听听,这位同学说的多清晰呀。通过刚才的学习,老师发现我们班有一群善于思考的同学。从刚才的研究中我们知道了含有字母的式子可以表示数也可以表示数量间的关系。有时人们喜欢用某个固定的字母来表示一个量。(出示正方形)
3、探索用字母表示数量关系时的简便写法
(1)、指名读题。
师:大家来复习一下,正方形的周长怎么求?(正方形周长=边长×4)面积计算公式呢?(正方形面积=边长×边长)那么该怎样用字母来表示这两个公式呢?指名回答(板书在下面:a×4 a×a)
提问:周长会用字母表示吗?(固定用大写的C)
师:面积的计算公式用字母怎么表示呢?
(2)、简便写法
大家有没有感觉,用字母来表示比原来(简单了)。如果这里的a×4和a×a有更加简明的写法,想知道吗?请大家自学书106页下面的内容,找出其中的规则,并且将方框中的内容补充完整。
汇报交流:①、a×4或4×a中间的乘号可以改成小圆点,读作a乘4。乘也可以省略不写,不管a×4或4×a都必须数字再前,字母再后。
②、a与1相乘得1a,就是a。
③、a×a可以怎样写?怎样读?表示什么?
指名说说,完成板书,然后观看一段视频。
师:有趣吗?这些规则呀还真不容易记,同学们看着黑板来想想规则中哪些地方要特别注意。请同学们结合这两个公式在小组里说一说。
师:现在我们就用这些规则来试一试,好不好?
(三)巩固练习,深化知识
1、出示想想做做第1题
(1)、指名读题,并告诉老师省略乘号是什么意思?(乘号不写了)
(2)、先让学生填表,追问“4a”表示几本笔记本的价钱?他们都表示了什么数量关系?问:“a”表示什么数?
2、出示判断题、接用手式来判断。
师:2a等于a×2它表示2个a相加。两者表示的意义不一样。
师:这节课同学们学的很好,我们到快乐广场去轻松一下。
3、出示快乐广场。
师:能看懂图中的a、b、c表示什么?同学来说一说。
为什么用不同的字母来表示呀?(在同一题中一般用不同的字母表示不同的数)说说你想去哪?(出示问题)指名回答。
师:好的,咱们就到生活馆去瞧一瞧。
4、(课件演示)
师:现在老师和同学们一起做个小游戏,数青蛙的眼睛,嘴和腿。
师:一只青蛙一张嘴,两只眼睛,四条腿,那么两只青蛙呢?(生:两只青蛙两张嘴,四只眼睛八条腿)嘴怎么算的?眼睛怎么算的?腿怎么算的?(生:两只青蛙的眼睛就是2×2,腿是4×2)那么3只青蛙呢?怎么算青蛙的嘴、眼睛、腿?(生:三只青蛙三张嘴,六只眼睛十八条腿,眼睛3×2腿4×3)听游戏规则,老师说青蛙的只数,你来说青蛙的嘴、眼睛、腿,会说的直接站起来说,看谁的反映最快,5只青蛙(生:---)10只青蛙(生:---)100只青蛙(生:---)那么n只青蛙呢?(生:---)n在这里表示什么呢?(生:青蛙的只数)
(四)课堂小结
同学们,今天我们学习了用字母表示数,这些在我们今天看来再寻常不过的例子在它的诞生之初却是一个伟大的创造。课件出示书上你知道吗的数学史方面的相关内容。

3. 数学史选讲

学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。

日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。

同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是着名的数学家也是着名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。

二、 学习数学史有利于培养学生正确的数学思维方式

现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。

数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。

数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。

三、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机

动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达62.21%,而对数学“很感兴趣”的只有23.12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。

数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些着名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。

四、学习数学史为德育教育提供了舞台

在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。

首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。

然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。

其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执着追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。

最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多着名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利着名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所着《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与着名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。

【参考文献】

【1】中华人民共和国教育部制订 普通高中数学课程标准(实验) 人民教育出版社 2003

【2】张奠宙 李士锜 李俊 编着 数学教育学导论 高等教育出版社 2003

【3】李文林 编 数学史概论 高等教育出版社2002

【4】张楚廷 着 教育部高等教育司 组编 数学文化 高等教育出版社 1999

【5】赵鸿涛 李华轩 高中生数学学习情况的调查 新乡教育学院学报 2003年 04期

本文是全国高师院校数学教育研究会2004年年会交流论文

4. 如何让在小学的孩子对数学产生兴趣

大家都知道“兴趣是最好的老师”。说到兴趣,大家对这个词都毫不陌生。而且,我们常常对别人说:干什么事都要有兴趣。学生学习也一样,对数学课要有兴趣,才能爱学,才能学好。那么,怎样才算对某一种事物感兴趣呢?当人们力求认识某种事物,渴望从事某种活动,并在其中获得心里满意感时,他就对该事物或该活动有了兴趣。
我们在教学中,该如何培养学生学习数学的兴趣呢?
要培养学生学习数学的兴趣,我认为可以从以下几个方面入手:
一、导入新课时引发学习兴趣。
导入新课是一堂课的重要环节,俗话说“良好的开端是成功的一半”。为此,我经常从教材的特点出发,通过组织有兴趣的小游戏,讲述生动的小故事,或以一个激起思维的数学问题等方法导入新课。这样做,不仅能把学生的注意力集中起来,而且能够激发学生的学习兴趣,使学生的思维在短短的几分钟内活跃起来。
在教“加法的初步认识”这一课中,我创设了这样一个情境,使学生在愉快而又紧张的氛围中学会这一抽象的知识。刚上课,我就给学生讲一个“花仙子”的故事:花仙子她很喜欢花,因为她就是由一朵花变成的,她是个美丽的姑娘,昨天晚上,她悄悄的送给我一些花,小朋友,你们想看吗?”不一会儿,学生都说:“想”。于是,我拿出小花,马上问道:“你们知道这有几朵花吗?”学生迅速答道:“1朵。”于是我又拿出两朵花问道:如果我把两个手的花放在一起,你能知道是几朵吗?”这时学生知道是3朵,我又追问:“你知道怎样计算吗?”顿时教室里静了下来,我抓住机会说:“学习今天的知识,你就马上知道了。”在学生最佳的心理状态之下自然地导入了新课,使学生怀着浓厚的兴趣转入下一阶段的学习。在这里,疑问使学生产生了好奇心,好奇心又使学生转化成强烈的求知欲和浓厚的学习兴趣。
二、讲授新课时保持学习兴趣。
学习新知识本身是一项艰苦的脑力劳动。在学习过程中,既需要一定的意志努力,也需要对整个学习过程产生兴趣。即变“苦学”为“乐学”,变“要我学”为“我要学”。为了保持学生学习兴趣,我的做法是:1、重视运用教具、学具和电化教学手段,让学生的多种感官都参加到教学活动之中。2、营造良好的教学氛围,建立和谐的师生关系,使学生在轻松愉快的环境中学习。3、创设良好的教学情境,通过富有启发性的问题,通过组织学生互相交流,通过让学生不断体验到成功的欢乐保持学生的学习兴趣。
在《认识钟表》这一内容的教学中,我采用了让课堂活起来,让学生动起来,让学生主动认识事物,发现规律,解决问题的方法,大大提高了学生学习的积极性。我先用神秘的语气对小学生说:钟表上有很多你们认识的数和数字朋友,你们能把这些朋友找出来吗?这样学生的好奇心一下子就被激发出来了。于是他们认真的仔细的寻找着,找到后,我又提问:“那你们还想认识更多的朋友吗?”学生非常想,我就神奇的为他们介绍:“有位朋友名叫分钟,它长得高,跑得快,另一位朋友叫时针,它胖点,矮点,跑得也慢点。”就这样,学生就自然地接受了新知识。
这一教学过程,学生是怀着好奇地心里逐步认识新知识的。培养了学生全面观察问题的思维方式,教师只是学生学习的合作者、引导者。
三、巩固练习时提高学习兴趣。
巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意练习形式的设计,注意使练习有趣味性。
对一年级学生来说,在练习时主要是设计一些有趣的游戏,让学生在轻松愉快的气氛中练习,达到我们预定的教学目标。如教学“8、7、6、5加几”这一内容时,我在即将下课时设计了一个“摘苹果”的游戏:如果你算对了,就可以收获苹果。学生迫不及待地想摘到苹果,他们通过动脑筋,收获了属于自己的果子。通过这个游戏,学生巩固了本堂课的教学内容,教师检查了教学效果,学生兴趣浓厚,课堂气氛活跃。
兴趣将促使学生迸发强烈的求知欲,从内心产生一种自我追求,去学习、探索。当他们获得成功之后,他们内心的喜悦会更加利于他们的对学习产生更浓的兴趣。

5. 怎样将数学史融入到中学数学教学中

《数学课程标准(实验)》提出:“数学是人类的一种文化,他的内容、思想、方法和语言是现代文明的重要组成部分。”数学是一种科学,更是一种人类的文化。营造数学文化的人文氛围,揭示数学的文化内涵,在数学教学中,渗透数学史是必不可少的!我们认为小学数学必须以数学文化内涵为导向重构教学,让数学史走进小学数学课堂,通过这些丰富内容的呈现,激发学生学习数学的兴趣,掌握数学知识的精华,真正提高学生的数学素养。只有如此,才能真正实现以学科教育促进学生的全面发展。

如何让数学史走进数学课堂?
1提高教师的自身的数学文化素养。现在的数学教师中有相当一部分教师基本的数学文化素养,部分教师知识面太窄,对数学的文化内涵无从把握。有的教师甚至从未读过数学史或未完整地读过数学史,于是他们不能正确的理解“渗透数学文化思想”的重要内涵。基础教育的教师,尤其是贫困边远地区的教师团队在这一方面的问题就更为严重,由于供教师参考的关于渗透数学史教育的文献比较少,所以他们自身的数学文化素养相对滞后。大多数数学教师把有关的数学史知识轻描淡写,一带而过,大大忽视了数学史对数学学习的促进作用,。
培养什么样的人才很大程度上取决于老师的教育思想和教育行为。教师的文化底蕴是数学“文化”的保证,教师对教材的理解,对数学的理解,对教学活动的组织都反映了教师的文化修养。所以说,提高教师的自身的数学文化素养迫在眉睫。首先,学校单位应有计划地组织小学教师学习、培训。而作为教师本身要提高意识,树立数学史的教育价值理念。有成长意识的教师会主动学习与自身教学有关的资料,熟悉学科最新动态,尽可能扩大有关教学的知识面,从而让自己跟上时代潮流,做一个专业型教师。从而把数学史融入到数学课堂教学当中,体现数学的文化价值。

2转变重“知”轻“识”的功利化观念
在各种考试压力下,仅仅关注学生对数学知识的接受,大搞题海战术,只会越来越使学生喘不过气,从而更加厌恶数学。所以,在数学教学中,我们必须树立全面育人的教育观,实施“减负”政策,认真贯彻素质教育,逐渐有序的把数学史的教育渗透到教学中去,重视对数学概念的理解、掌握数学思想与方法的运用。使学生能轻松愉悦的面对数学,让他们不再是空洞的解题训练,帮助学生树立好数学的信心。

3 改进教材编制, 以数学之趣激发兴趣。提高学习热情
俗话说:“兴趣是最好的老师。”学习数学,不应是“概念—定义—定理—解题”那样枯燥乏味。所以,为了能在教学过程中激发学生的学习兴趣,在小学数学教材中,应不同程度的适当的选一些有趣的数学史料作为背景知识。在小学阶段,数学史知识能更好的激发孩子们学习数学的兴趣,使学生更好的理解数学。(1)加强低年级段的数学史教育。从一年级开始就渗透数学史知识,在每册中都适当安排一些内容,让学生尽早接触。从儿童心理年龄特征看,在低段课程教材中恰当地融入数学史,更能吸引儿童,激发他们学习数学的热情。(2)增加新的设计模式。目前总体上说,小学数学教材的内容设计主要有两种比较好的模式。其一是“习题内容引出数学史”,像人教版,小学数学五年级上册的先由习题第5题创设的游戏情景引出“有些偶数可以表示成两个质数的和”的结论,进而通过提出问题而引出歌德巴赫猜想的历史由来,以及我国数学家对此所做出的贡献。另外一种模式是“阅读材料式数学史”,比如说西师版的在“倍数与因数”这章内容后以阅读材料的形式体现出来的:以“陈景润”为主线展开,有陈景润的故事引出哥德巴赫猜想。像这样的丰富的内容模式设计,使得数学史的渗透才更加全面,更具效果,能激发学生强烈的求知欲、好奇感,从而产生探索的快乐感,发生浓厚的学习兴趣。因此,教材编写者有必要根据不同的情况设计不同的模式,以达到效果最优化。

4、让数学方法、数学名题走进课堂

“问题是数学的心脏”这是数学教师所熟知的由美国数学家哈尔莫斯所说的一句名言。而作为教师,就应该善于创设问题,让数学课是由一个又一个的问题,一层又一层深入的问题组成的。而用数学方法论激活问题可以使教学具有灵活性,开放性和探索性。进行一题多解、一题多变,产生变化性问题;引导解题后反思,提出引申性问题等,激发学生的好奇心。同时需要结合数学名题,如高斯的故事:七岁时高斯还不到几秒钟把 1到 100的整数1+2+3+4+……97+98+99+100用1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,50×101=5050的方法快速的算出了答案。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
这些具有精妙解题思想的数学名题,必能深深地吸引学生,帮助他们掌握知识的来龙去脉,学习到数学家的坚毅品质及为数学二合科学的献身精神,进而让学生养成良好的学习态度。

5、 运用数学史开展各种活动丰富课堂
怎样把枯燥无味的数学课堂变成吸引学生的磁场呢?我们可以通过各种小活动丰富课堂,活跃课堂气氛。实施这种方式的关键在于最大限度的发挥学生的能动性和积极性。

第一,课堂上可以进行一些与数学有关的小游戏,数学游戏的参与,既增加了学生的学习兴趣,也让学生了解数学家解决问题的特殊见解。

第二,开展读书交流活动。数学史课外书籍的阅读和交流是一种很好的方式,利用假期的时间提出任务,要求学生按自己的喜好阅读数学史书籍、故事,然后在活动课堂上交流自己的心得体会。
学生都是有悟性的,他们可以可以从陈景润等人研究数学奥秘的辛苦中获得一份学习的勇气; 可以从祖冲之的圆周率计算比外国早一千年获得民族自豪感……
第三,影视资料的运用。影视资料具有直观形象性这么一个优点,学生在听的同时又可以看,这种眼耳并用的声像结合,非常符合符合小学生的思维习惯。在活动课当中播放一些相关的数学史影视资料使介绍数学史知识时图文并茂,妙趣横生,更能吸引学生,激发他们的兴趣。
所以,利用计算机这一现代化的工具为数学史教育服务,把某一数学知识的发展过程娓娓道来,生动有趣。激发他们学习数学的欲望和自信。
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富。在数学文化的背景下学习,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学。这样才能有效地彰显它的文化价值。

最后,建议你多看一点数学史方面的书籍。国内现在也有一些书是讨论数学史与数学教育的,像汪晓勤,张维忠的书,

6. 数学小报的内容能写些什么喃

一、正确引导,以报促学

为了丰富学生的课余生活,当我宣布要学生每个月办出一张数学手抄小报时,学生既感兴趣又无从下手,这时我趁机专门给学生上了一节数学手抄小报指导课,讲清办数学手抄小报的目的和要求、注意事项、怎样办等,让学生有个大概眉目。为了给学生提供更具体的指导,我特别编制了数学手抄小报内容、形式、版面要求提示表(略)各一份,供学生办报时参照。

在指导学生办数学手抄小报的过程中,我注意做到以下几个“结合”。

1.个人努力与团体协作相结合。

让学生办数学手抄小报,一般要求通过个人努力来完成,但是不排除三五人协作和小组的帮与带,以便充分发挥团体协作的优势。

2.学习数学与反映思想相结合。

学生办数学手抄小报所用的稿件,除了选摘外,还要求学生自撰、征集。学生在办数学手抄小报时,我并不刻意要求他们一律用数学内容,凡是与学习数学有关的内容都可以采用。例如,介绍一个学习数学的经验或教训、反映学习上的疑难和困惑、记一堂有趣的数学活动课。这样一来,学生既学到了数学知识,又反映了思想状况,有利于教和学。

3.开展活动与美化环境相结合。

学生交来的数学手抄小报,我每期都要组织学生或品尝、阅读,或提出修改建议,或评选优秀作品,或交流办报经验。与此同时,我还有意组织学生开展“手抄报评比”“优秀作品欣赏”“优秀作品展”等活动。学生在活动中增长了见识,培养了兴趣,提高了学习数学的自主性和自觉性,而且这一期又一期、一张又一张图文并茂的、迷人的数学手抄小报在展览的同时装饰了教室,美化了校园。学生从中可以受到潜移默化的思想情感熏陶和审美教育。

4.长期坚持与精神鼓励相结合。

任何事物的发展和提高都不是一朝一夕所能办到的,办数学手抄小报也不例外,它是在长期坚持的情况下,逐渐产生效果和提高办报水平的。如有的学生对办报开始很不感兴趣,马虎了事,这时我及时给予鼓励和督促,久而久之,他们也能办出张像样的数学手抄小报来,并且在学习态度上发生了奇迹般的变化。有的学生甚至在排版、绘图、书写等方面很有创意。

二、长期实践,体会深刻

经过一段时间的尝试和训练,我感到学生在办报的过程中,增长了见识,活跃了思维,端正了学习态度,增强了综合素质。全班大多数学生的数学作业做得规范整洁了,不少学生对数学产生了浓厚的兴趣,有的学生经常向我询问办报时遇到的一些数学难题。特别是有一次,我在讲“0能被任何自然数整除”这道判断题是对的时,有个学生对它提出了质疑:“假如这道题是对的,也就是说0是任何自然数的倍数,任何自然数是0的约数。而课本上讲一个数最小的倍数是它本身,最大的约数也是它本身。0比任何自然数都小,不可能是自然数的倍数。任何自然数都比0大,不可能是0的约数。所以我认为这道题是错的。”我当时便表扬了这个学生敢于质疑,并做了解释:“这道题应该是对的,这是整除的含义所规定的,课本上的两个结论是有前提的,是在自然数范围内讨论得到的。”课后我询问这个学生为什么能提出这样的见解,这个学生说:“办数学手抄小报时曾经看到过这种想法。”我暗暗吃惊的同时,惊喜办报带给学生的间接效应。

总之,坚持办数学手抄小报,无论是对学生数学意识的形成,还是数学学习方法的改进;无论是对数学知识的掌握,还是数学能力的提高;无论是对学生竞争意识的培养,还是团结协作意识的形成,都有其独特的功能和作用。经过多年的实践,我深深地体会到,指导学生办数学手抄小报有以下几点好处。

1.有利于学生综合素质的提高。

数学手抄小报是以学生为主体,或“独立创业” 或“团体协助”而创作出来的能反映思想教育、数学教育和美育的综合艺术。学生必须具备多种文化知识和能力才能办出一张张图文并茂的并能获得大家好评的小报。坚持办数学手抄小报,既培养了学生的动手操作能力、审美能力、思维能力和创新能力等,又使得学生在美术、写作、书法等方面的技能有了明显的进步。

2.有利于非智力因素的培养和形成,从而促进课堂教学。

(1)激发学生学习数学的兴趣,增强求知欲,配合数学教学。

学生在办报过程中,不断积累数学知识,丰富想象力,促使学生对数学产生浓厚的兴趣。这些都将有力地促进数学教学,使学生轻松地掌握数学知识。

(2)促进课外阅读,形成优良学风。

学生为了办出一张张迷人的数学手抄小报,必须广采博闻,进行大量的文字摘抄、图画剪贴和文章的写作。他们常常废寝忘食地查阅、聚精会神地选择、 一丝不苟地誊抄、认真负责地校对……这些都标志着优良学风的初步形成。

(3)促进团结友爱,形成优良班风。

在办报过程中,学生之间的帮与带、学习与协作,可以促进学生相互了解,加深友谊。随着时间的推移,班级逐渐达到内部的和谐,形成强烈的班集体意识。

(4)培养良好的学习习惯,促进数学学习。

办数学手抄小报是一项认真细致的工作。从打格子、收集材料、筛选材料到编辑、排版、绘图、誊抄等一系列工作都要求学生要认真仔细、书写整洁、自觉检查、严格要求、克服困难。而这些良好的学习习惯的养成,都会转移到对数学的学习上去。

3.有利于陶冶情操,美化生活。

一张好的数学手抄小报不仅能使人增长数学知识、陶冶情操,而且能给人一种美的艺术享受。(胡德勇) 转载于《人教网》
你有打印机吗?
如果有
就从网上下一些数学题目或一些数学家资料或关于数学的所有东西比如说:脑筋急转弯之类的反正有图片就加图片弄得好看点就是了!
没有
就从网上把文字抄下来字不行就叫老爸老妈抄(一定要用银光笔哦这样才漂亮)图片没有就画下来其他同上(如果有)

数学史所研究的内容是:
①数学史研究方法论问题;
②数学史通史;
③数学分科史
④不同国家、民族、地区的数学史及其比较;
⑤不同时期的断代数学史;
⑥数学家传记;
⑦数学思想、概念、数学方法发展的历史; ⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;2.按其研究的范围又可分为内史和外史。
①内史 从数学内在的原因来研究数学发展的历史;②外史 从外在的社会原因来研究数学发展与其他社会因素间的关系。

上网查啊
数学小报可以写一些数学科学家的传记
数学小游戏和习题解答
可以在中国教育网上找找
1.找一些数学趣味题.
2.关于数学家的故事
3.用漫画方式解一道数学题
4.奥数题天地

7. 数学史 论文

一篇有关数学史的论文(网上搜索不到)

研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是:

①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。

内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;

外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。

数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。

人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学着作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些着作的翻译既是当时的数学研究,也是对古典数学着作的整理和保存。

近代西欧各国的数学史研究,是从18世纪,由J.É.蒙蒂克拉、C.博絮埃、A.C.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经J.de拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。

①通史研究 代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880~1908)以及C.B.博耶(1894、1919)、D.E.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的着作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所着《古今数学思想》一书,被认为是70年代以来的一部佳作。

②古希腊数学史 许多古希腊数学家的着作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,着名的代数学家范?德?瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。

③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所着的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合着,1945)都是这方面的权威性着作。他所着《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范?德?瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性着作之一。

④断代史和分科史研究 德国数学家(C.)F.克莱因着的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专着并不多,但却有(C.H.)H.外尔写的《半个世纪的数学》之类的着名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专着出现,而且不乏名家手笔。许多着名数学家参预数学史的研究,可能是基于(J.-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。”

⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论着选读》出现,辑录了历代数学家成名之作的珍贵片断。

⑥专业性学术杂志 最早出现于19世纪末,M.B.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。

中国以历史传统悠久而着称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书?律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书?律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。

在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。

以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。

利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专着出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专着一道,都是权威性着作。

从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨着《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。

参考资料:
http://ask.100ksw.com/ask/xx/lw/24371.shtml

数学史
自建国以来,由于中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多急需解决的疑难问题,也就是由于当时形势的需要,急需把这些“个体户”组织起来,按“互助组”的形式进行研究。

自1977年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,1984年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代着名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名着名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。

在中国古典数学中,《九章算术》及《数书九章》是两部着名学术着作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于1986年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。

原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于1986年、1987年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。

为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于1984年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。

在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至于前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。

为了深入探讨中国古典数学名着,制定了《中国数学史研究丛书》的规划,于1982年、1987年分别出版了两部学术专着,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由于这两部专着的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。

为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于1987年、1991年在北京师范大学举办了“秦九韶《数书九章》成书740周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、60余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。

为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由于技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由于发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。

到现在,“互助组”已不适合当前形势的需要,乃代替以“才团”,我们实事求是,继续前进,争取新的成绩。

参考资料:
http://www.mathhistory.net/Ecation.asp

希望对你有帮助

8. 5年级综合性数学手抄报

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的“二次互逆定理”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同“费马质数”的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法” (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的“二次互逆定理”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同“费马质数”的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法” (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了......

1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案:10秒.
2 计算1234+2341+3412+4123=?
答案:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
答案:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
答案:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 答案: 48
9 100条直线最多能把平面分为几个部分?
答案:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
答案:8天
11 100以内所有能被2或3或5或7整除的自然数个数
答案:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
答案:1005
14 求360的全部约数个数. 答案: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆.
16 约数共有8个的最小自然数为____. 答案:24
17求所有除4余一的两位数和 答案;1210
可以出一些奥数题,名字就叫<<练兵场>>
尽量不要写笑话,多写知识,问题,名人.

9. 数学史是这么样的

一、数学史的研究对象
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
不会比较就不会思考, 而且所有的科学思考与调查都不可缺少比较,或者说,比较是认识的开始。今日世界的发展是多极的,不同国家和地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域的数学文化的比较以及数学交流史研究也日趋活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面而展开。
数学史既属史学领域,又属数学科学领域,因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是"古"与"今"间的一种联系。
二、数学史的分期
数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)。
三、数学史的意义
(1)数学史的科学意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多着名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国着名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为"吴方法"的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。
(2)数学史的文化意义
美国数学史家m.克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
(3)数学史的教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

从普高教育上谈
数学史教学的教育功能
【摘要】 我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系,文化内涵和美学价值的认识.《普通高中数学课程标准(实验)》增加的数学史内容,弥补了这方面的不足.本文旨在探讨它的教育功能是如何体现的.
【关键字】 数学史 数学观 教育功能
《普通高中数学课程标准(实验)》(以下简称《标准》)新意迭出,在教学内容上的亮点之一是增加了数学史方面的内容,提供了有关的11个专题,指出要通过数学史的学习使学生"体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神."过去我们一直认为数学属于理科,学的应该是如何解题这样的方法技巧,而数学史像是文科的内容,作为课外了解的扩充知识倒是可以,成为正式的教学内容似乎没有必要.这种思想体现了我们一直以来对数学教育目的和内容的理解误区:只重视形式化的逻辑演绎能力的培养,而忽视了学习数学作为一门科学更内在的东西.下面我们就数学史教学的教育功能作一下探讨.
学习数学史可以帮助学生认识数学,形成正确的数学观
学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生"初步了解数学产生与发展的过程,体会数学对人类文明发展的作用",而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥,难学.数学的本质特征是什么 当今数学究竟发展到了哪个阶段 在科学中的地位如何 与其它学科有什么联系 这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案.
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类"理性思维"的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学,光学,工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期.而数学历史上的三大危机分别是古希腊时期的不可公度量,17,18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然.学生可以从这种联系中发现数学追求的是清晰,准确,严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性,严谨性和广泛应用性了.
同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用.从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿,笛卡儿等人既是着名的数学家也是着名的物理学家.在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征.这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的.
二, 学习数学史有利于培养学生正确的数学思维方式
现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁.为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少.虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点.所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的.影响了学生正确数学思维方式的形成.
数学史的学习有利于缓解这个矛盾.通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式.这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的"穷竭法","求抛物线弓形面积"等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对"无穷小"的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的.
数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步.对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式.
三,学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机
动机是激励人,推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心,求知欲,兴趣,爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机.兴趣是最好的动机.在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会,家长,学校的压力下获得的.中国的情况如何呢 尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:"我不喜欢数学,但为了高考,我必须学好数学"的学生占被调查者的比例高达62.21%,而对数学"很感兴趣"的只有23.12%.可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果.但这并不是因为数学本身无趣,而是它被我们的教学所忽视了.在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向.
数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒,幻方,商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果.二是一些历史上的数学名题,例如七桥问题,哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣.还有一些着名数学家的生平,轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的"从阿贝尔到伽罗瓦",阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁.还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展,至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名.如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了.
四,学习数学史为德育教育提供了舞台
在《标准》的要求下,德育教育已经不是像以前那样主要是政治,语文,历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下.
首先,学习数学史可以对学生进行爱国主义教育.现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽,祖冲之,祖暅,杨辉,秦九韶,李冶,朱世杰等一批优秀的数学家,有中国剩余定理,祖暅公理,"割圆术"等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年.《标准》中"数学史选讲"专题3就是"中国古代数学瑰宝",提到《九章算术》,"孙子定理"这些有代表意义的中国古代数学成就.
然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上.从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程.《标准》中"数学史选讲"专题11—— "中国现代数学的发展"也提到要介绍"现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程".在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的"国际意识",让学生认识到爱国主义不是体现在"以己之长,说人之短"上,在科学发现上全人类应该相互学习,互相借鉴,共同提高,我们要尊重外国的数学成就,虚心的学习,"洋为中用".
其次,学习数学史可以引导学生学习数学家的优秀品质.任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点.数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力.阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是"我不能留给后人一条没有证完的定理".欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表.对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执着追求的故事,对于他们正确看待学习过程中遇到的困难,树立学习数学的信心会产生重要的作用.
最后,学习数学史可以提高学生的美学修养.数学是美的,无数数学家都为这种数学的美所折服.能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美.很多着名的数学定理,原理都闪现着美学的光辉.例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用.两千多年来,它激起了无数人对数学的兴趣,意大利着名画家达芬奇,印度国王Bhaskara,美国第20任总统Carfield等都给出过它的证明.1940年,美国数学家卢米斯在所着《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力.黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与着名的斐波那契数列有着十分密切的内在联系.同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口.
【参考文献】
【1】中华人民共和国教育部制订 普通高中数学课程标准(实验) 人民教育出版社 2003
【2】张奠宙 李士锜 李俊 编着 数学教育学导论 高等教育出版社 2003
【3】李文林 编 数学史概论 高等教育出版社2002
【4】张楚廷 着 教育部高等教育司 组编 数学文化 高等教育出版社 1999
【5】赵鸿涛 李华轩 高中生数学学习情况的调查 新乡教育学院学报 2003年 04期

热点内容
绝地求生未来之役比赛为什么进不去 发布:2023-08-31 22:07:08 浏览:1271
dota2位置什么意思 发布:2023-08-31 22:00:04 浏览:714
lol电竞是什么样子 发布:2023-08-31 21:58:40 浏览:1170
绝地求生八倍镜的那个圆圈怎么弄 发布:2023-08-31 21:58:31 浏览:1235
lol龙龟一个多少金币 发布:2023-08-31 21:55:07 浏览:622
王者如何改游戏内名称 发布:2023-08-31 21:55:06 浏览:911
游戏主播打广告是什么意思 发布:2023-08-31 21:55:06 浏览:1566
绝地求生如何免费拿到ss7赛季手册 发布:2023-08-31 21:52:13 浏览:785
pgg是哪个国家的战队lol 发布:2023-08-31 21:52:07 浏览:668
一个人的时候才发现游戏很没意思 发布:2023-08-31 21:49:24 浏览:1268